Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
< >
page |< < (340) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div655" type="letter" level="4" n="4">
                <p>
                  <s xml:id="echoid-s4130" xml:space="preserve">
                    <pb o="340" rhead="IO. BAPT. BENED." n="352" file="0352" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0352"/>
                  quapropter cogitemus
                    <var>.r.a.</var>
                  indeterminatam tranſire per centrum
                    <var>.s.</var>
                  ipſius circuli, ſi-
                    <lb/>
                  militer etiam
                    <var>.r.i.</var>
                  ad punctum medium lateris
                    <var>.e.o.</var>
                  deinde à tribus punctis,
                    <var>e.i.o.</var>
                  ima-
                    <lb/>
                  ginemur tres perpendiculares ad
                    <var>.r.a.</var>
                  hoc eſt
                    <var>.e.a</var>
                  :
                    <var>i.d.</var>
                  et
                    <var>.o.q.</var>
                  & vbi circulus ſecat
                    <var>.r.a.</var>
                    <lb/>
                  fit punctum
                    <var>.g.</var>
                  protractis deinde
                    <var>.g.n</var>
                  :
                    <var>g.x</var>
                  : et
                    <var>.g.u.</var>
                  habebimus triangulum
                    <var>.a.e.r.</var>
                  ſimi-
                    <lb/>
                  lem triangulo
                    <var>.g.u.r.</var>
                  vnde clarum erit productum
                    <var>.g.r.a.</var>
                  æquale eſſe producto
                    <var>.e.r.u.</var>
                    <lb/>
                    <reg norm="productumque" type="simple">productumq́</reg>
                    <var>.g.r.q.</var>
                  æquale eſſe producto
                    <var>.o.r.n.</var>
                  nam trianguli
                    <var>.g.r.n.</var>
                  et
                    <var>.o.r.q.</var>
                  ſunt in-
                    <lb/>
                  u
                    <unsure/>
                  icem ſimiles, ſed productum
                    <var>.g.r.a.</var>
                  ſimul cum producto
                    <var>.g.r.q.</var>
                  duplum eſt producto
                    <var>.
                      <lb/>
                    g.r.d.</var>
                  ex prima ſexti, eo quod
                    <var>.a.r.q.</var>
                  dupla eſt
                    <var>.d.r.</var>
                  & ideo productum
                    <var>.e.r.u.</var>
                  ſimul
                    <reg norm="cum" type="context">cũ</reg>
                    <lb/>
                  producto
                    <var>.o.r.n.</var>
                  duplum erit producto
                    <var>.i.r.x.</var>
                  quod quidem æquale eſt producto
                    <var>.g.r.
                      <lb/>
                    d.</var>
                  ex ſimilibus rationibus iam ſupradictis. </s>
                  <s xml:id="echoid-s4131" xml:space="preserve">Nunc ex ſimilibus rationibus producta
                    <var>.f.
                      <lb/>
                    r.b.</var>
                  et
                    <var>.K.r.c.</var>
                  dupla erunt producto
                    <var>.i.r.x</var>
                  . </s>
                  <s xml:id="echoid-s4132" xml:space="preserve">quare prima producta æqualia erunt ſecun-
                    <lb/>
                  dis. </s>
                  <s xml:id="echoid-s4133" xml:space="preserve">Quod eſt propoſitum.</s>
                </p>
                <div xml:id="echoid-div655" type="float" level="5" n="1">
                  <figure xlink:label="fig-0351-03" xlink:href="fig-0351-03a">
                    <image file="0351-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0351-03"/>
                  </figure>
                  <figure xlink:label="fig-0351-04" xlink:href="fig-0351-04a">
                    <image file="0351-04" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0351-04"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4134" xml:space="preserve">Ab huiuſmodi demonſtrat ione facilè videre poteris non eſſe generaliter verum,
                    <lb/>
                  id quod Nicolaus Tartalea inquit .43. quæſito vltimæ partis ſuorum tractatuum, hoc
                    <lb/>
                  eſt centrum circuli
                    <var>.r.n.g.</var>
                  ſemper eſſe in perpendiculari, quæ à puncto
                    <var>.r.</var>
                  ad lineam
                    <var>.e.
                      <lb/>
                    o.</var>
                  tranſit, protracta ipſa
                    <var>.e.o.</var>
                  quantum volueris, imò in quacunque alia linea ipſum eſ
                    <lb/>
                  ſe poteſt, nec non in aliqua parallela ipſi
                    <var>.e.o.</var>
                  quemadmodum ex te ipſo, medianti-
                    <lb/>
                  bus, hic ſupradictis rationibus videre poteris, vnde ex neceſſitate ſequitur illud pro
                    <lb/>
                  blema ſemper ferè falſum eſſe.</s>
                </p>
                <figure position="here">
                  <image file="0352-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0352-01"/>
                </figure>
                <figure position="here">
                  <image file="0352-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0352-02"/>
                </figure>
              </div>
              <div xml:id="echoid-div657" type="letter" level="4" n="5">
                <head xml:id="echoid-head503" style="it" xml:space="preserve">Alia ſpeculatio circa breuitatem radiorum incidentium
                  <lb/>
                & reflexorum.</head>
                <head xml:id="echoid-head504" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4135" xml:space="preserve">ALius modus quem exercitationis gratia vltimò cogitaui, ad demonſtrandum
                    <lb/>
                  breuitatem radiorum incidentium, & reflexorum in ſpeculo plano, nunc ad
                    <lb/>
                  te ſcribo, quamuis prolixior ali quantulum ſit eo, quod ab antiquis traditus eſt.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4136" xml:space="preserve">Imaginemur itaque
                    <reg norm="lineam" type="context">lineã</reg>
                    <var>.p.h.</var>
                  pro
                    <reg norm="communi" type="context">cõmuni</reg>
                  ſectione ſuperficiei reflexionis
                    <reg norm="cum" type="context">cũ</reg>
                  ſpe-
                    <lb/>
                  culo
                    <var>.r.a.</var>
                  verò et
                    <var>.a.b.</var>
                  pro radijs dictis, qui ſemper
                    <reg norm="faciunt" type="context">faciũt</reg>
                  angulos
                    <var>.b.a.h.</var>
                  et
                    <var>.r.a.p.</var>
                    <reg norm="inuicem" type="context">inuicẽ</reg>
                  </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>