Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
< >
page |< < (347) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div666" type="letter" level="4" n="8">
                <p>
                  <s xml:id="echoid-s4201" xml:space="preserve">
                    <pb o="347" rhead="EPISTOL AE." n="359" file="0359" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0359"/>
                  mine deſtitutæ
                    <reg norm="interuallumque" type="simple">interuallumq́;</reg>
                  tantummodò inter
                    <var>.y.x.</var>
                  illuminatum erit, ſed ſi in
                    <lb/>
                  loco
                    <var>.c.u.</var>
                  poſitum fuerit, </s>
                  <s xml:id="echoid-s4202" xml:space="preserve">tunc totum
                    <var>.c.u.</var>
                  illuminatum erit, ſed debili modo propter
                    <lb/>
                  detractionem factam à reflexione in ſuperficie corporis ſphærici, vt ſupra diximus.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4203" xml:space="preserve">Poſito deinde obiecto in loco
                    <var>.i.z.H.f.</var>
                  tunc partes
                    <var>.z.i.</var>
                  et
                    <var>.H.f.</var>
                  rectos Solis radios
                    <lb/>
                  habebunt cum aliquibus refractis, ſed
                    <var>.z.H.</var>
                  pauciſſimum habebit lumen, pro-
                    <lb/>
                  pter diſgregationem radiorum. </s>
                  <s xml:id="echoid-s4204" xml:space="preserve">Poſito poſtea ipſo obiecto in loco
                    <var>.t.l.r.s.</var>
                  tanto
                    <lb/>
                  minus lumen habebit pars
                    <var>.l.r.</var>
                  propter dictam
                    <reg norm="diſgregationem" type="context">diſgregationẽ</reg>
                  , ſeu
                    <reg norm="diſſipationem" type="context">diſſipationẽ</reg>
                  radio
                    <lb/>
                  rum, & ſic ſucceſſiuè quanto remotius poſitum fuerit ipſum obiectum, tanto minus
                    <lb/>
                  illuminabitur. </s>
                  <s xml:id="echoid-s4205" xml:space="preserve">vnde ita remotum poterit locari, ut nullus actus luminis in eo
                    <lb/>
                  videatur, de radijs ſcilicet, qui per ſphæram chryſtallinam tranſibunt, ſed videbi-
                    <lb/>
                  tur vmbra ipſius ſphęrę in obiecto propoſito, cum nullum actum illuminationis in
                    <lb/>
                  eo loco obiecti habeant radij tranſeuntes per dictam ſphęram. </s>
                  <s xml:id="echoid-s4206" xml:space="preserve">quapropter partes
                    <var>.
                      <lb/>
                    t.l.</var>
                  et
                    <var>.r.s.</var>
                  illuminatæ erunt à Sole, et
                    <var>.l.r.</var>
                  omnino lumine deſtituta.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4207" xml:space="preserve">Quòd vero tolerabilior ſit oculis radius reflexus Solis à ſuperſicie aquæ, quàm
                    <lb/>
                  à ſuperficie alicuius ſpeculi, oritur ab eo, quod ſupra diximus, hoc eſt, quod ma-
                    <lb/>
                  gna parsipſius luminis penetrat in aquam, & non totum reflectit, quod quidem non
                    <lb/>
                  accidit ſpeculis opacis.</s>
                </p>
              </div>
            </div>
            <div xml:id="echoid-div670" type="section" level="3" n="29">
              <div xml:id="echoid-div670" type="letter" level="4" n="1">
                <head xml:id="echoid-head511" xml:space="preserve">DE LONGITVDINE DVORVM LATERVM
                  <lb/>
                cuiuſuis trianguli ſupra tertium.</head>
                <head xml:id="echoid-head512" style="it" xml:space="preserve">Hieronymo Fenarolo.</head>
                <p>
                  <s xml:id="echoid-s4208" xml:space="preserve">
                    <emph style="sc">
                      <reg norm="QVod" type="conjecture">QVo'd</reg>
                    </emph>
                  quælibet duo latera continentia rectum angulum cuiuſuis triangu-
                    <lb/>
                  li orthogonij, longiora ſint tertio latere, per diametrum circuli in eo in-
                    <lb/>
                  ſcripti, ab alijs iam demonſtratum fuit. </s>
                  <s xml:id="echoid-s4209" xml:space="preserve">Sed quòd quælibet duo latera
                    <lb/>
                  cuiuſuis trianguli longiora ſint tertio per latus tetragonicum, quadrupli
                    <lb/>
                  producti cuiuſuis lineæ deſcendentis ab angulo contento à dictis duobus lateribus
                    <lb/>
                  ad oppoſitam partem circuli inſcripti, in partem extrinſecam ipſius lineæ, nullus
                    <lb/>
                  (quod ſciam) vnquam ſcripſit, vel animaduertit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4210" xml:space="preserve">Sit exempli gratia triangulus
                    <var>.a.b.c.</var>
                  quem volueris, in quo deſcribatur circulus
                    <var>.
                      <lb/>
                    u.s.n.</var>
                  & puncta contingentiæ ſint eadem
                    <var>.u.s.n.</var>
                  à puncto vero
                    <var>.a.</var>
                  deſcendat linea
                    <var>.a.
                      <lb/>
                    i.e.</var>
                  quæ terminetur à circunferentia in puncto
                    <var>.e.</var>
                  ipſius circunferentiæ, vbi volue-
                    <lb/>
                  ris. </s>
                  <s xml:id="echoid-s4211" xml:space="preserve">Dico nunc latera
                    <var>.a.b.</var>
                  et
                    <var>.a.c.</var>
                  longiora eſſe latere
                    <var>.b.c.</var>
                  per latus
                    <reg norm="tetragonicum" type="context">tetragonicũ</reg>
                  qua-
                    <lb/>
                  drupli producti ipſius
                    <var>.a.e.</var>
                  in
                    <var>.a.i</var>
                  . </s>
                  <s xml:id="echoid-s4212" xml:space="preserve">Nam certi ſamus ex vltima parte penultimæ ter-
                    <lb/>
                  tij Eucli
                    <var>.n.c.</var>
                  et
                    <var>.s.c.</var>
                  æquales inuicem eſſe, & ſimiliter
                    <var>.b.s.</var>
                  et
                    <var>.b.u.</var>
                  vnde ex communi
                    <lb/>
                  conceptu dicta latera maiora erunt
                    <lb/>
                    <figure xlink:label="fig-0359-01" xlink:href="fig-0359-01a" number="394">
                      <image file="0359-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0359-01"/>
                    </figure>
                  ipſo
                    <var>.b.c.</var>
                  per
                    <var>.a.u.</var>
                  et
                    <var>.a.n.</var>
                  quæ duæ
                    <lb/>
                  partes ſunt inuicem æquales di-
                    <lb/>
                  cta ratione, & quadratum lineæ
                    <lb/>
                  æqualis aggregato earum, eſſet qua
                    <lb/>
                  druplum quadrato cuiuſuis earum
                    <lb/>
                  ex .4. ſecundi, ſed ex penultima ter
                    <lb/>
                  tij, productum
                    <var>.a.e.</var>
                  in
                    <var>.a.i.</var>
                  æquale eſt
                    <lb/>
                  quadrato ipſius
                    <var>.a.u.</var>
                  vel ipſius
                    <var>.a.n</var>
                  .</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>