Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
< >
page |< < (351) of 445 > >|
EPISTOL AE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div670" type="section" level="3" n="29">
              <div xml:id="echoid-div673" type="letter" level="4" n="2">
                <pb o="351" rhead="EPISTOL AE." n="363" file="0363" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0363"/>
                <p>
                  <s xml:id="echoid-s4222" xml:space="preserve">Volo etiam quod ad partem
                    <var>.c.l.s.</var>
                  quadrilateri conſtituta ſit alia parallela ad
                    <var>.z.
                      <lb/>
                    r.</var>
                  & in æquali diſtantia ab ipſa quemadmodum
                    <var>.u.n.</var>
                  diſtat ad eademmet
                    <var>.z.r.</var>
                  ad ean
                    <lb/>
                  dem operationem faciendam. </s>
                  <s xml:id="echoid-s4223" xml:space="preserve">Vnde in vno tantummodo itinere puncti
                    <var>.s.</var>
                  ab
                    <var>.r.</var>
                    <reg norm="vſque" type="simple">vſq;</reg>
                    <lb/>
                  ad
                    <var>.c.</var>
                  deſignabimus quartam partem ſectionis, conuerſo poſtea inſtrumento, hoc eſt
                    <lb/>
                  poſito puncto
                    <var>.r.</var>
                  vbi prius erat
                    <var>.z.</var>
                  et
                    <var>.z.</var>
                  vbi erat
                    <var>.r.</var>
                  aliam delineabimus quartam, &
                    <lb/>
                  ſic ad oppoſitam partem ipſius
                    <var>.z.r.</var>
                  faciendum erit. </s>
                  <s xml:id="echoid-s4224" xml:space="preserve">Hoc inſtrumentum poſſumus
                    <lb/>
                  etiam ita conſtruere, vt puncta
                    <var>.o.</var>
                  et
                    <var>.K.</var>
                  poſſint collocari in laterihus
                    <var>.c.e.</var>
                  et
                    <var>.e.s.</var>
                  vbi no
                    <lb/>
                  bis magis libuerit, ita vt licebit in qualibet proportione
                    <reg norm="axium" type="context">axiũ</reg>
                  propoſita, oxygoniam
                    <lb/>
                  deſignare. </s>
                  <s xml:id="echoid-s4225" xml:space="preserve">Nam
                    <var>.c.o.</var>
                  erit longitudo dimidij axis minoris, et
                    <var>.c.e.</var>
                  dimidij maioris.</s>
                </p>
              </div>
            </div>
            <div xml:id="echoid-div676" type="section" level="3" n="30">
              <div xml:id="echoid-div676" type="letter" level="4" n="1">
                <head xml:id="echoid-head515" xml:space="preserve">DE CONSTITVTIONE TRIANGVLI
                  <lb/>
                orthogonij conditionati.</head>
                <head xml:id="echoid-head516" style="it" xml:space="preserve">Domino Ludouico de Rocchaforte.</head>
                <p>
                  <s xml:id="echoid-s4226" xml:space="preserve">
                    <emph style="sc">QVod</emph>
                  à me poſtulas, non eſt admodum difficile, cupis enim triangulum
                    <lb/>
                  orthogonium, exempli gratia
                    <var>.o.i.e.</var>
                  in figura
                    <var>.A.</var>
                  ita conſtituere, vt di-
                    <lb/>
                  uiſum ſit à perpendiculari
                    <var>.a.i.</var>
                  & quod proportio
                    <var>.o.e.</var>
                  ad
                    <var>.o.i.</var>
                  ſit vt
                    <var>.o.i.</var>
                  ad
                    <lb/>
                    <var>i.e.</var>
                  & quod quadrati
                    <var>.o.i.</var>
                  ad quadratum
                    <var>.o.a.</var>
                  ſit vt
                    <var>.e.i.</var>
                  ad
                    <var>.e.a.</var>
                  & quadra
                    <lb/>
                  tum
                    <var>.o.i.</var>
                  ad quadratum
                    <var>.e.i.</var>
                  ſit .ut
                    <var>.o.a.</var>
                  ad
                    <var>.e.a</var>
                  . </s>
                  <s xml:id="echoid-s4227" xml:space="preserve">Quæ omnia in promptu veniunt, quo
                    <lb/>
                  tieſcunque
                    <var>.o.e.</var>
                  fuerit diameter alicuius circuli,
                    <reg norm="diuiſaque" type="simple">diuiſaq́;</reg>
                  in puncto
                    <var>.a.</var>
                  ſecundum pro
                    <lb/>
                  portionem habentem medium
                    <reg norm="duoque" type="simple">duoq́;</reg>
                  extrema, protracta deinde perpendiculari
                    <var>.a.
                      <lb/>
                    i.</var>
                  ad
                    <var>o.e.</var>
                  uſque ad circunferentiam,
                    <reg norm="coniunctæque" type="simple">coniunctæq́;</reg>
                    <var>.o.i.</var>
                  et
                    <var>.i.e</var>
                  : tale triangulum, omnia
                    <lb/>
                  ſupradicta in ſe continebit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4228" xml:space="preserve">Nam ex .30. tertij angulus
                    <var>.i.</var>
                  rectus erit, & ex .8. ſexti
                    <var>.o.i.</var>
                  erit media proportio-
                    <lb/>
                  nalis inter
                    <var>.o.e.</var>
                  et
                    <var>.o.a.</var>
                  et
                    <var>.e.i.</var>
                  inter
                    <var>.o.e.</var>
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0363-01a" xlink:href="fig-0363-01"/>
                  et
                    <var>.a.e.</var>
                  ſed quia ex diuiſione facta in
                    <reg norm="pum" type="context">pũ</reg>
                    <lb/>
                  cto
                    <var>.a.</var>
                  etiam
                    <var>.o.a.</var>
                  erit media proportio-
                    <lb/>
                  nalis inter totum & reſiduum, ideo ex
                    <num value="11">.
                      <lb/>
                    11.</num>
                  quinti ita erit
                    <var>.o.e.</var>
                  ad
                    <var>.e.i.</var>
                  vt
                    <var>.o.e.</var>
                  ad
                    <var>.
                      <lb/>
                    o.a.</var>
                  vnde ex .9. eiuſdem
                    <var>.a.o.</var>
                  erit æqua-
                    <lb/>
                  lis
                    <var>.e.i.</var>
                  & ideo
                    <var>.o.i.</var>
                  erit media proportio
                    <lb/>
                  nalis inter
                    <var>.o.e.</var>
                  et
                    <var>.e.i</var>
                  . </s>
                  <s xml:id="echoid-s4229" xml:space="preserve">Sed quia propor-
                    <lb/>
                  tio
                    <var>.e.i.</var>
                  ad
                    <var>.a.e.</var>
                    <reg norm="eadem" type="context">eadẽ</reg>
                  eſt, quę ipſius
                    <var>.o.e.</var>
                  ad
                    <lb/>
                    <var>o.a</var>
                  . </s>
                  <s xml:id="echoid-s4230" xml:space="preserve">tunc videbis ex .18. ſexti, quod pro
                    <lb/>
                  portio quadrati
                    <var>.o.i.</var>
                  ad quadratum
                    <var>.o.a.</var>
                    <lb/>
                  erit vt
                    <var>.e.i.</var>
                  ad
                    <var>.e.a.</var>
                  cum vero duo trian-
                    <lb/>
                  guli
                    <var>.o.i.a.</var>
                  et
                    <var>.a.i.e.</var>
                  ſint inuicem ſimiles
                    <lb/>
                  ex ſupradicta .8. ſexti, </s>
                  <s xml:id="echoid-s4231" xml:space="preserve">tunc videbis ex
                    <lb/>
                  18. et .17. eiuſdem dictos
                    <reg norm="triangulos" type="context">triãgulos</reg>
                  ean
                    <lb/>
                  dem habere inter ſe proportionem, quę
                    <lb/>
                  eſt inrer quadrata ipſius
                    <var>.o.i.</var>
                  et
                    <var>.i.e.</var>
                  vnde
                    <lb/>
                  ex prima ſexti ita ſe inuicem habebunt
                    <var>.
                      <lb/>
                    a.o.</var>
                  et
                    <var>.a.e</var>
                  .</s>
                </p>
                <div xml:id="echoid-div676" type="float" level="5" n="1">
                  <figure xlink:label="fig-0363-01" xlink:href="fig-0363-01a">
                    <image file="0363-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0363-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4232" xml:space="preserve">Circa eam verò difficultatem quam </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>