Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
< >
page |< < (352) of 445 > >|
I O. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div676" type="section" level="3" n="30">
              <div xml:id="echoid-div676" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4232" xml:space="preserve">
                    <pb o="352" rhead="I O. BAPT. BENED." n="364" file="0364" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0364"/>
                  habes in circulo .ω vbi fateris te non videre qua ratione eadem proportio ſit qua-
                    <lb/>
                  drati
                    <var>.u.o.</var>
                  ad quadratum
                    <var>.o.n.</var>
                  vt lineæ
                    <var>.o.a.</var>
                  ad lineam
                    <var>.o.e.</var>
                  partes diametri
                    <var>.o.i.</var>
                  ipſius
                    <lb/>
                  circuli, terminatæ à perpendicularibus
                    <var>.u.a.</var>
                  et
                    <var>.n.e</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4233" xml:space="preserve">Hoc neceſſario contingit, propterea quod cum fuerint protractæ
                    <var>.u.i.</var>
                  et
                    <var>.n.i.</var>
                    <reg norm="tunc" type="context">tũc</reg>
                    <lb/>
                  habebimus ad partem
                    <var>.o.u.i.</var>
                  triangulum
                    <var>.o.u.i.</var>
                  diuiſum in duo triangula ſimilia ipſi
                    <lb/>
                  totali triangulo. </s>
                  <s xml:id="echoid-s4234" xml:space="preserve">Idem etiam dico ad partem
                    <var>.o.n.i.</var>
                  vnde ex tali ſimilitudine habe-
                    <lb/>
                  bimus
                    <var>.o.u.</var>
                  mediam proportionalem inter
                    <var>.o.i.</var>
                  et
                    <var>.o.a.</var>
                  et ſic
                    <var>.o.n.</var>
                  erit media proportio
                    <lb/>
                  nalis inter
                    <var>.o.i.</var>
                  et
                    <var>.o.e.</var>
                  </s>
                  <s xml:id="echoid-s4235" xml:space="preserve">quare ex .16. ſexti, quadratum
                    <var>.o.u.</var>
                  æquale erit producto ipſius
                    <lb/>
                    <var>o.i.</var>
                  in
                    <var>.o.a.</var>
                  & quadratum
                    <var>.o.n.</var>
                  æquale producto
                    <var>.o.i.</var>
                  in
                    <var>.o.e.</var>
                  ſed ex prima eiuſdem, ea
                    <lb/>
                  dem proportio eſt ipſius
                    <var>.o.a.</var>
                  ad
                    <var>.o.e.</var>
                  quæ producti ipſius
                    <var>.o.i.</var>
                  in
                    <var>o.a.</var>
                  ad productum
                    <var>.o.
                      <lb/>
                    i.</var>
                  in
                    <var>.o.e.</var>
                  </s>
                  <s xml:id="echoid-s4236" xml:space="preserve">quare, ex
                    <reg norm="communi" type="context">cõmuni</reg>
                  conceptu, ita erit quadrati
                    <var>.o.u.</var>
                  ad quadratúm.o.n. </s>
                  <s xml:id="echoid-s4237" xml:space="preserve">Et hęc
                    <lb/>
                  eſt alia circuli paſſio.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4238" xml:space="preserve">Reliqua verò difficultas quam te habere ſcribis, eſt, quare cum duæ lineę
                    <lb/>
                    <var>a.u.</var>
                  et
                    <var>.b.s.i.</var>
                  ſint inuicem ęquales, diuiſæ verò non æquali modo, ſed tali, quod
                    <var>.a.</var>
                    <lb/>
                  maior ſit quam
                    <var>.u.</var>
                  et
                    <var>.b.s.</var>
                  maior quam
                    <var>.i.</var>
                  quomodo poteſt fieri, quod ſi
                    <var>.u.</var>
                  maior fue-
                    <lb/>
                  rit
                    <var>.i.</var>
                  proportio
                    <var>.a.</var>
                  ad
                    <var>.i.</var>
                  maior ſit quam ipſius
                    <var>.b.s.</var>
                  ad
                    <var>.u</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4239" xml:space="preserve">Hoc etiam ex neceſſitate cuenit, eo
                    <lb/>
                  quod ſi accepta fuerit
                    <var>.t.n.</var>
                  æqualis
                    <var>.u.</var>
                  ab
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0364-01a" xlink:href="fig-0364-01"/>
                    <reg norm="ipſaque" type="simple">ipſaq́;</reg>
                  abſciſa fuerit
                    <var>.t.</var>
                  æqualis
                    <var>.i.</var>
                  & ab
                    <var>.
                      <lb/>
                    b.s.</var>
                  abſciſa
                    <var>.s.</var>
                  æqualis
                    <var>.n.</var>
                  habebimus
                    <var>.a.</var>
                  et
                    <lb/>
                  b. inuicem æ quales, vnde habebis ma-
                    <lb/>
                  iorem propor tionem ipſius
                    <var>.b.</var>
                  ad
                    <var>.t.</var>
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                  s. ad
                    <var>.n.</var>
                  quod cum clarum per ſe ſit, tibi
                    <lb/>
                  relinquo. </s>
                  <s xml:id="echoid-s4240" xml:space="preserve">ſed ex .27. quinti, proportio
                    <lb/>
                  b. ad. s, maior erit quam
                    <var>.t.</var>
                  ad
                    <var>.n.</var>
                  & ex
                    <lb/>
                  28.
                    <reg norm="eiuſdem" type="context">eiuſdẽ</reg>
                    <reg norm="proportio" type="simple">ꝓportio</reg>
                    <var>.b.s.</var>
                  ad
                    <var>.s.</var>
                  maior erit,
                    <lb/>
                  quam
                    <var>.t.n.</var>
                  ad
                    <var>.n.</var>
                  & ex .27. maior propor
                    <lb/>
                  tio erit ipſius
                    <var>.b.s.</var>
                  ad
                    <var>.n.t.</var>
                  quam
                    <var>.s.</var>
                  ad
                    <var>.n.</var>
                    <lb/>
                  ergo ex .33. maior erit ipſius
                    <var>.b.</var>
                  ad
                    <var>.t.</var>
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                    <var>b.s.</var>
                  ad
                    <var>.n.t.</var>
                  hoc eſt maior ipſius
                    <var>.a.</var>
                  ad
                    <lb/>
                  i. quam
                    <var>.b.s.</var>
                  ad
                    <var>.u.</var>
                  quod eſt propo-
                    <lb/>
                  ſitum.</s>
                </p>
                <div xml:id="echoid-div677" type="float" level="5" n="2">
                  <figure xlink:label="fig-0364-01" xlink:href="fig-0364-01a">
                    <image file="0364-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0364-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4241" xml:space="preserve">Id verò de quo me interrogas
                    <reg norm="nempe" type="context">nẽpe</reg>
                  de
                    <lb/>
                  diſtinctione orbium cęleſtium, ortum
                    <lb/>
                  habet à communi opinione motuum
                    <lb/>
                  fixarum. </s>
                  <s xml:id="echoid-s4242" xml:space="preserve">Nam cum putauerint philo-
                    <lb/>
                  ſophi ipſas moueri, ſemper eandem
                    <reg norm="ſeruando" type="context">ſeruãdo</reg>
                  inuicem diſtantiam, non ſine ratione
                    <lb/>
                  crediderunt eas fixas eſſe eodem in orbe, idem etiam poſtea de planetis opinaue-
                    <lb/>
                  runt. </s>
                  <s xml:id="echoid-s4243" xml:space="preserve">Hoc eſt, vnumquemque, aliquo in orbe, fixo exiſtere.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>