Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
401 389
402 390
403 391
404 392
405 393
406 394
407 395
408 396
409 397
410 398
411 399
412 400
413 401
414 402
415 403
416 404
417 405
418 406
419 407
420 408
< >
page |< < (352) of 445 > >|
I O. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div676" type="section" level="3" n="30">
              <div xml:id="echoid-div676" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4232" xml:space="preserve">
                    <pb o="352" rhead="I O. BAPT. BENED." n="364" file="0364" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0364"/>
                  habes in circulo .ω vbi fateris te non videre qua ratione eadem proportio ſit qua-
                    <lb/>
                  drati
                    <var>.u.o.</var>
                  ad quadratum
                    <var>.o.n.</var>
                  vt lineæ
                    <var>.o.a.</var>
                  ad lineam
                    <var>.o.e.</var>
                  partes diametri
                    <var>.o.i.</var>
                  ipſius
                    <lb/>
                  circuli, terminatæ à perpendicularibus
                    <var>.u.a.</var>
                  et
                    <var>.n.e</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4233" xml:space="preserve">Hoc neceſſario contingit, propterea quod cum fuerint protractæ
                    <var>.u.i.</var>
                  et
                    <var>.n.i.</var>
                    <reg norm="tunc" type="context">tũc</reg>
                    <lb/>
                  habebimus ad partem
                    <var>.o.u.i.</var>
                  triangulum
                    <var>.o.u.i.</var>
                  diuiſum in duo triangula ſimilia ipſi
                    <lb/>
                  totali triangulo. </s>
                  <s xml:id="echoid-s4234" xml:space="preserve">Idem etiam dico ad partem
                    <var>.o.n.i.</var>
                  vnde ex tali ſimilitudine habe-
                    <lb/>
                  bimus
                    <var>.o.u.</var>
                  mediam proportionalem inter
                    <var>.o.i.</var>
                  et
                    <var>.o.a.</var>
                  et ſic
                    <var>.o.n.</var>
                  erit media proportio
                    <lb/>
                  nalis inter
                    <var>.o.i.</var>
                  et
                    <var>.o.e.</var>
                  </s>
                  <s xml:id="echoid-s4235" xml:space="preserve">quare ex .16. ſexti, quadratum
                    <var>.o.u.</var>
                  æquale erit producto ipſius
                    <lb/>
                    <var>o.i.</var>
                  in
                    <var>.o.a.</var>
                  & quadratum
                    <var>.o.n.</var>
                  æquale producto
                    <var>.o.i.</var>
                  in
                    <var>.o.e.</var>
                  ſed ex prima eiuſdem, ea
                    <lb/>
                  dem proportio eſt ipſius
                    <var>.o.a.</var>
                  ad
                    <var>.o.e.</var>
                  quæ producti ipſius
                    <var>.o.i.</var>
                  in
                    <var>o.a.</var>
                  ad productum
                    <var>.o.
                      <lb/>
                    i.</var>
                  in
                    <var>.o.e.</var>
                  </s>
                  <s xml:id="echoid-s4236" xml:space="preserve">quare, ex
                    <reg norm="communi" type="context">cõmuni</reg>
                  conceptu, ita erit quadrati
                    <var>.o.u.</var>
                  ad quadratúm.o.n. </s>
                  <s xml:id="echoid-s4237" xml:space="preserve">Et hęc
                    <lb/>
                  eſt alia circuli paſſio.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4238" xml:space="preserve">Reliqua verò difficultas quam te habere ſcribis, eſt, quare cum duæ lineę
                    <lb/>
                    <var>a.u.</var>
                  et
                    <var>.b.s.i.</var>
                  ſint inuicem ęquales, diuiſæ verò non æquali modo, ſed tali, quod
                    <var>.a.</var>
                    <lb/>
                  maior ſit quam
                    <var>.u.</var>
                  et
                    <var>.b.s.</var>
                  maior quam
                    <var>.i.</var>
                  quomodo poteſt fieri, quod ſi
                    <var>.u.</var>
                  maior fue-
                    <lb/>
                  rit
                    <var>.i.</var>
                  proportio
                    <var>.a.</var>
                  ad
                    <var>.i.</var>
                  maior ſit quam ipſius
                    <var>.b.s.</var>
                  ad
                    <var>.u</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4239" xml:space="preserve">Hoc etiam ex neceſſitate cuenit, eo
                    <lb/>
                  quod ſi accepta fuerit
                    <var>.t.n.</var>
                  æqualis
                    <var>.u.</var>
                  ab
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0364-01a" xlink:href="fig-0364-01"/>
                    <reg norm="ipſaque" type="simple">ipſaq́;</reg>
                  abſciſa fuerit
                    <var>.t.</var>
                  æqualis
                    <var>.i.</var>
                  & ab
                    <var>.
                      <lb/>
                    b.s.</var>
                  abſciſa
                    <var>.s.</var>
                  æqualis
                    <var>.n.</var>
                  habebimus
                    <var>.a.</var>
                  et
                    <lb/>
                  b. inuicem æ quales, vnde habebis ma-
                    <lb/>
                  iorem propor tionem ipſius
                    <var>.b.</var>
                  ad
                    <var>.t.</var>
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                  s. ad
                    <var>.n.</var>
                  quod cum clarum per ſe ſit, tibi
                    <lb/>
                  relinquo. </s>
                  <s xml:id="echoid-s4240" xml:space="preserve">ſed ex .27. quinti, proportio
                    <lb/>
                  b. ad. s, maior erit quam
                    <var>.t.</var>
                  ad
                    <var>.n.</var>
                  & ex
                    <lb/>
                  28.
                    <reg norm="eiuſdem" type="context">eiuſdẽ</reg>
                    <reg norm="proportio" type="simple">ꝓportio</reg>
                    <var>.b.s.</var>
                  ad
                    <var>.s.</var>
                  maior erit,
                    <lb/>
                  quam
                    <var>.t.n.</var>
                  ad
                    <var>.n.</var>
                  & ex .27. maior propor
                    <lb/>
                  tio erit ipſius
                    <var>.b.s.</var>
                  ad
                    <var>.n.t.</var>
                  quam
                    <var>.s.</var>
                  ad
                    <var>.n.</var>
                    <lb/>
                  ergo ex .33. maior erit ipſius
                    <var>.b.</var>
                  ad
                    <var>.t.</var>
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                    <var>b.s.</var>
                  ad
                    <var>.n.t.</var>
                  hoc eſt maior ipſius
                    <var>.a.</var>
                  ad
                    <lb/>
                  i. quam
                    <var>.b.s.</var>
                  ad
                    <var>.u.</var>
                  quod eſt propo-
                    <lb/>
                  ſitum.</s>
                </p>
                <div xml:id="echoid-div677" type="float" level="5" n="2">
                  <figure xlink:label="fig-0364-01" xlink:href="fig-0364-01a">
                    <image file="0364-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0364-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4241" xml:space="preserve">Id verò de quo me interrogas
                    <reg norm="nempe" type="context">nẽpe</reg>
                  de
                    <lb/>
                  diſtinctione orbium cęleſtium, ortum
                    <lb/>
                  habet à communi opinione motuum
                    <lb/>
                  fixarum. </s>
                  <s xml:id="echoid-s4242" xml:space="preserve">Nam cum putauerint philo-
                    <lb/>
                  ſophi ipſas moueri, ſemper eandem
                    <reg norm="ſeruando" type="context">ſeruãdo</reg>
                  inuicem diſtantiam, non ſine ratione
                    <lb/>
                  crediderunt eas fixas eſſe eodem in orbe, idem etiam poſtea de planetis opinaue-
                    <lb/>
                  runt. </s>
                  <s xml:id="echoid-s4243" xml:space="preserve">Hoc eſt, vnumquemque, aliquo in orbe, fixo exiſtere.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>