Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
< >
page |< < (356) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div680" type="section" level="3" n="31">
              <div xml:id="echoid-div683" type="letter" level="4" n="2">
                <pb o="356" rhead="IO. BAPT. BENED." n="368" file="0368" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0368"/>
              </div>
              <div xml:id="echoid-div686" type="letter" level="4" n="3">
                <head xml:id="echoid-head522" style="it" xml:space="preserve">Duplex modus par allelam orizontalem alicui muro propoſito
                  <lb/>
                una tantummodo statione ducendi.</head>
                <head xml:id="echoid-head523" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4276" xml:space="preserve">DVcere parallelam orizontalem alicui muro recto propoſito vna tantummodò
                    <lb/>
                  ſtatione, non ſolum poſſibile eſt ſed etiam facile.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4277" xml:space="preserve">Sit exempli gratia murus rectus
                    <var>.a.d.</var>
                  ſitus verò
                    <var>.o.n</var>
                  . </s>
                  <s xml:id="echoid-s4278" xml:space="preserve">Si cupimus ducere
                    <var>.n.u.</var>
                    <lb/>
                  parallelam dicto muro, accipiatur quadratum geometricum, ſeu ſcala altimetra
                    <lb/>
                  vel aliquod ſimile inſtrumentum, quo mediante à ſitu
                    <var>.o.</var>
                  videbimus punctum
                    <var>.q.</var>
                    <lb/>
                  quod volueris ipſius muri,
                    <reg norm="dexteram" type="context">dexterã</reg>
                    <lb/>
                  verſus, inferius tamen. ipſo
                    <var>.o.</var>
                  vnde
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0368-01a" xlink:href="fig-0368-01"/>
                  formatum habebimus triangulum
                    <var>.
                      <lb/>
                    n.o.q</var>
                  . </s>
                  <s xml:id="echoid-s4279" xml:space="preserve">Quo facto ad partem
                    <reg norm="ſiniſtram" type="context">ſiniſtrã</reg>
                    <lb/>
                  cum eodem angulo
                    <var>.n.o.q.</var>
                  oporte-
                    <lb/>
                  bit nos inuenire punctum aliquod
                    <var>.
                      <lb/>
                    p.</var>
                  in dicta ſuperficie muri, </s>
                  <s xml:id="echoid-s4280" xml:space="preserve">& tunc
                    <lb/>
                  habebimus angulum
                    <var>.n.o.p.</var>
                  æqua-
                    <lb/>
                  lem angulo
                    <var>.n.o.q.</var>
                  vnde angulus
                    <var>.q.
                      <lb/>
                    n.p.</var>
                  nobis cognitus erit,
                    <reg norm="duoque" type="simple">duoq́;</reg>
                  late
                    <lb/>
                  ra
                    <var>.n.q.</var>
                  et
                    <var>.n.p.</var>
                  erunt inuicem æqua-
                    <lb/>
                  lia, ex .26. primi Euclid. cum angu-
                    <lb/>
                  li
                    <var>.q.o.n.</var>
                  et
                    <var>.q.n.o.</var>
                  ſint æquales angu
                    <lb/>
                  lis
                    <var>.p.o.n.</var>
                  et
                    <var>.p.n.o.</var>
                  & latus
                    <var>.o.n.</var>
                  com
                    <lb/>
                  mune, vnde angulus
                    <var>.q.n.g.</var>
                  extrinſe
                    <lb/>
                  cus trianguli
                    <var>.p.q.n.</var>
                    <reg norm="reſiduusque" type="simple">reſiduusq́;</reg>
                  ex
                    <lb/>
                  duobus rectis nobis cognitus erit,
                    <lb/>
                  etiam & eius medictas
                    <var>.q.n.u.</var>
                  æqua
                    <lb/>
                  lis angulo
                    <var>.p.q.n.</var>
                  eo quod ex .5. pri-
                    <lb/>
                  mi, anguli
                    <var>.q.p.</var>
                  ſunt inuicem æquales, & ex .32. eiuſdem, æquales ſunt extrinſeco
                    <var>.q.n.
                      <lb/>
                    g.</var>
                  & ex 27.
                    <var>n.u.</var>
                  erit parallela ipſi
                    <var>.q.p</var>
                  .</s>
                </p>
                <div xml:id="echoid-div686" type="float" level="5" n="1">
                  <figure xlink:label="fig-0368-01" xlink:href="fig-0368-01a">
                    <image file="0368-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0368-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4281" xml:space="preserve">Aliter etiam poſſumus idem efficere, ſumendo duo illa puncta in ſuprem a linea
                    <lb/>
                  orizontali ipſius muri ad ſuperiorem partem aſpiciendo, quemadmodum ad infe-
                    <lb/>
                  riorem, quod vnum & idem erit, dummodò non aſpiciamus orizontaliter, eo quod
                    <lb/>
                  nos oportet ſuperficiem conicam producere, linea viſuali mediante. </s>
                  <s xml:id="echoid-s4282" xml:space="preserve">cognoſcere au­
                    <lb/>
                  tem angulum
                    <var>.q.n.p.</var>
                  facile erit, conſtituendo primò inſtrumentum in ſitu trianguli
                    <var>.
                      <lb/>
                    o.n.q.</var>
                    <reg norm="aſpiciendoque" type="simple">aſpiciendoq́;</reg>
                  punctum
                    <var>.c.</var>
                  in ſuperficie
                    <var>.n.q.o.</var>
                  & ſic in alia parte, exiſtente in-
                    <lb/>
                  ſtrumento in ſitu trianguli
                    <var>.o.p.n.</var>
                  aſpicere oportet punctum
                    <var>.e.</var>
                  proximum puncto
                    <var>.n.</var>
                    <lb/>
                  vbi poſſit metiri angulum
                    <var>.c.n.e</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4283" xml:space="preserve">Sed ſi ſitus puncti
                    <var>.n.</var>
                  talis eſſet, vt ab eo non poſſet aliquis murum videre ad re-
                    <lb/>
                  ctos angulos, aſpiceremus punctum
                    <var>.q.</var>
                  ſub orizontali ab oculis noſtris, in orizontali
                    <lb/>
                  tamen puncti
                    <var>.n.</var>
                  ita quod angulus
                    <var>.o.n.q.</var>
                  rectus exiſtat, quo facto obſeruando angu-
                    <lb/>
                  lum
                    <var>.n.o.q.</var>
                  eo mediante, medianteq́ue
                    <var>.n.o.</var>
                  cum angulo
                    <var>.o.n.q.</var>
                  cognoſcemus
                    <lb/>
                  quantitatem diſtantiæ
                    <var>.n.q.</var>
                  idem etiam faciendum eſt cum alio puncto
                    <var>.p.</var>
                  quod
                    <lb/>
                  volueris, & mediantibus duobus punctis inuicem proximis
                    <var>.c.e.</var>
                  cognoſcatur an- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>