Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
331 319
332 320
333 321
334 322
335 323
336 324
337 325
338 326
339 327
340 328
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
< >
page |< < (357) of 445 > >|
EPISTOL AE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div680" type="section" level="3" n="31">
              <div xml:id="echoid-div686" type="letter" level="4" n="3">
                <p>
                  <s xml:id="echoid-s4283" xml:space="preserve">
                    <pb o="357" rhead="EPISTOL AE." n="369" file="0369" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0369"/>
                  gulus
                    <var>.p.n.q.</var>
                  vnde ex methodo .56.
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0369-01a" xlink:href="fig-0369-01"/>
                  primi triangulorum Monteregij,
                    <lb/>
                  cognoſcemus reliqua trianguli
                    <var>.
                      <lb/>
                    q.p.n</var>
                  . </s>
                  <s xml:id="echoid-s4284" xml:space="preserve">Conſtituendo poſtea angu-
                    <lb/>
                  lum
                    <var>.q.n.u.</var>
                  æqualem angulo
                    <var>.n.q.p.</var>
                    <lb/>
                  propoſitum habebimus.</s>
                </p>
                <div xml:id="echoid-div687" type="float" level="5" n="2">
                  <figure xlink:label="fig-0369-01" xlink:href="fig-0369-01a">
                    <image file="0369-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0369-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4285" xml:space="preserve">Si etiam puncta
                    <var>.q.p.</var>
                  lineæ
                    <var>.q.p.</var>
                    <lb/>
                  orizontali in eodem plano non exi
                    <lb/>
                  ſterent cum puncto
                    <var>.n.</var>
                  nihil refer-
                    <lb/>
                  ret, dummodo in pauimento
                    <reg norm="notem" type="context">notẽ</reg>
                    <lb/>
                  tur
                    <reg norm="puncta" type="context">pũcta</reg>
                    <var>.c.e.</var>
                  proxima
                    <var>.n.</var>
                  in ijſdem
                    <lb/>
                  ſuperficiebus triangulorum
                    <var>.n.o.p.</var>
                    <lb/>
                  et
                    <var>.n.o.q.</var>
                  vnde
                    <var>.n.c.</var>
                  et
                    <var>.n.e.</var>
                  erunt
                    <reg norm="com- munes" type="context">cõ-
                      <lb/>
                    munes</reg>
                  ſectiones dictarum ſuperficierum cum ſuperficie pauimenti ſupra quam fit
                    <lb/>
                  ſtatio.</s>
                </p>
              </div>
            </div>
            <div xml:id="echoid-div690" type="section" level="3" n="32">
              <div xml:id="echoid-div690" type="letter" level="4" n="1">
                <head xml:id="echoid-head524" xml:space="preserve">CONI RECTI DIVISIO A PLANO
                  <lb/>
                parallelo baſi ſecundum datam proportionem.</head>
                <head xml:id="echoid-head525" style="it" xml:space="preserve">Rapbaeli de Auria.</head>
                <p>
                  <s xml:id="echoid-s4286" xml:space="preserve">
                    <emph style="sc">QVotiescvnqve</emph>
                  volueris conum rectum diuidere à plano parallelo ba-
                    <lb/>
                  ſi ſecundum vnam datam proportionem, nullius tibi erit difficultatis, con
                    <lb/>
                  ceſſa
                    <reg norm="tamen" type="wordlist">tamẽ</reg>
                  pro inuenta diuiſione cuiuſuis propoſitę proportionis per tres
                    <lb/>
                  æquales partes.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4287" xml:space="preserve">Sit exempli gratia conus rectus
                    <var>.a.b.c.</var>
                  ſecandus vt dictum eſt, accipiatur latus
                    <lb/>
                  ipſius, quod ſit
                    <var>.a.c.</var>
                    <reg norm="ipſumque" type="simple">ipſumq́;</reg>
                  diuidatur in puncto
                    <var>.d.</var>
                  ſecundum illam proportionem
                    <lb/>
                  quam deſideras, hoc eſt ipſius
                    <var>.a.c.</var>
                  ad
                    <var>.a.d.</var>
                  quo facto, inter totum
                    <var>.a.c.</var>
                  et
                    <var>.a.d.</var>
                  inuenian
                    <lb/>
                  tur duæ lineæ proportionales, quarum maior ſit
                    <var>.a.i.</var>
                  </s>
                  <s xml:id="echoid-s4288" xml:space="preserve">tunc ſi conus
                    <var>.a.b.c.</var>
                  ſectus fue-
                    <lb/>
                  rit à plano per punctum
                    <var>.i.</var>
                  parallelo baſi, habebimus quod quærebamus.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4289" xml:space="preserve">Cuius rei ratio, primò eſt, quia quotieſcunque conus aliquis ſectus fuerit ab ali-
                    <lb/>
                  quo plano parallelo baſi ipſius, pars ſuperior ſimilis ſemper erit totali cono, quod
                    <lb/>
                  ita probo, cogitemus conum ſectum eſſe
                    <lb/>
                  à plano per axem
                    <var>.a.l.</var>
                  vnde ex .3. primi
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0369-02a" xlink:href="fig-0369-02"/>
                  Pergei, talis ſectio triangularis erit, quæ
                    <lb/>
                  ſit
                    <var>.a.b.c.</var>
                  et
                    <var>.b.c.</var>
                  diameter erit baſis.</s>
                </p>
                <div xml:id="echoid-div690" type="float" level="5" n="1">
                  <figure xlink:label="fig-0369-02" xlink:href="fig-0369-02a">
                    <image file="0369-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0369-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4290" xml:space="preserve">Imaginemur deinde
                    <var>.K.i.</var>
                  communem
                    <lb/>
                  eſſe ſectionem huiuſmodi trianguli cum
                    <lb/>
                  plano parallelo ipſi baſi, </s>
                  <s xml:id="echoid-s4291" xml:space="preserve">tunc tale
                    <reg norm="planum" type="context">planũ</reg>
                  ,
                    <lb/>
                  circulare erit ex .4. primi ipſius Pergei
                    <var>.K.
                      <lb/>
                    i.</var>
                  verò, eius diameter erit, et
                    <var>.a.m.</var>
                    <reg norm="ſuus" type="simple">ſuꝰ</reg>
                  axis.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4292" xml:space="preserve">Cum verò
                    <var>.a.l.</var>
                  ſit perpendicularis ipſi
                    <lb/>
                  baſi conitotalis, eo quod rectus ſupponi-
                    <lb/>
                  tur, ideo eadem
                    <var>.a.m.l.</var>
                  erit perpendicula
                    <lb/>
                  ris eriam ipſi ſecundo plano circulari, ex
                    <lb/>
                  conuerſa .14. vndecimi Euclid. </s>
                  <s xml:id="echoid-s4293" xml:space="preserve">vnde ex </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>