Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (362) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div703" type="section" level="3" n="35">
              <div xml:id="echoid-div703" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4331" xml:space="preserve">
                    <pb o="362" rhead="IO. BAPT. BENED." n="374" file="0374" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0374"/>
                  modifunis cum libramento triangulum ſcalenum conſtitueret.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4332" xml:space="preserve">Exempli gratia, ponamus lineam
                    <var>.d.b.c.</var>
                  eſſe libramentum .et
                    <var>.b.e.u.</var>
                  eius pedem,
                    <lb/>
                  funem autem, qui aliquando cum libramento facit triangulum iſocellum, & aliquan
                    <lb/>
                  do ſcalenum, eſſe
                    <var>.d.e.c.</var>
                  eſto etiam quod in figura
                    <var>.A.</var>
                  dictus triangulus
                    <var>.d.e.c.</var>
                  ſit iſo-
                    <lb/>
                  cellus, & in figura
                    <var>.B.</var>
                  ſcalenus. </s>
                  <s xml:id="echoid-s4333" xml:space="preserve">Tunc quæſiui à te an ſcires rationem, quare
                    <lb/>
                  funis
                    <var>.d.e.c.</var>
                  in figura
                    <var>.A.</var>
                  eſſet diſtenſus, & in figura
                    <var>.B.</var>
                  laxus quemadmodum vide-
                    <lb/>
                  bamus. </s>
                  <s xml:id="echoid-s4334" xml:space="preserve">cum mihireſponderis, neſcio quid, quod nunc memoria
                    <reg norm="non" type="context">nõ</reg>
                  teneo, ſed quia
                    <lb/>
                  pollicitus ſum metibi eam afferre, propterea nunc ad te mitto. </s>
                  <s xml:id="echoid-s4335" xml:space="preserve">Scias ergo huiuſ-
                    <lb/>
                  modirationem nihil aliud eſſe niſi quod in figura
                    <var>.A.</var>
                  duæ lineæ
                    <var>.c.e.</var>
                  et
                    <var>.d.e.</var>
                  ſimul è
                    <lb/>
                  directo iunctæ longiores ſint illis, quę reperiuntur in figura
                    <var>.B.</var>
                  ſed quia funis tam in
                    <lb/>
                  figura
                    <var>.B.</var>
                  quam in figura
                    <var>.A.</var>
                  vnus, & idem eſt, ideo in figura
                    <var>.B.</var>
                  laxatus eſt, & non in
                    <lb/>
                  tenſus, ut in figura
                    <var>.A</var>
                  . </s>
                  <s xml:id="echoid-s4336" xml:space="preserve">Sed vt huiuſmodi veritatis certam notitiam habeas, infraſcri
                    <lb/>
                  ptum circulum mente concipe
                    <var>.f.e.i.</var>
                  cuius ſemidiameter, æqualis ſit
                    <var>.b.e.</var>
                  & diame-
                    <lb/>
                  ter ſit
                    <var>.f.i.</var>
                  in quo imaginare eſſe tuum
                    <lb/>
                  libramentum
                    <var>.d.b.c.</var>
                  & figuras
                    <var>.A.</var>
                  et
                    <var>.B.</var>
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0374-01a" xlink:href="fig-0374-01"/>
                    <anchor type="figure" xlink:label="fig-0374-02a" xlink:href="fig-0374-02"/>
                  & pr obabo lineas
                    <var>.d.e.c.</var>
                  figurę
                    <var>.A.</var>
                  lon
                    <lb/>
                  giores eſſe lineis
                    <var>.d.e.c.</var>
                  figuræ
                    <var>.B</var>
                  .</s>
                </p>
                <div xml:id="echoid-div703" type="float" level="5" n="1">
                  <figure xlink:label="fig-0374-01" xlink:href="fig-0374-01a">
                    <image file="0374-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-01"/>
                  </figure>
                  <figure xlink:label="fig-0374-02" xlink:href="fig-0374-02a">
                    <image file="0374-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4337" xml:space="preserve">Imaginemur igitur lineam
                    <var>.b.e.</var>
                  eſſe
                    <lb/>
                  dimidium minoris axis
                    <reg norm="alicuius" type="simple">alicuiꝰ</reg>
                  ellipſis
                    <lb/>
                  cuius quidem figuræ ponamus
                    <var>.d.</var>
                  et
                    <var>.c.</var>
                    <lb/>
                  centra ipſius circunſcriptionis eſſe, cu
                    <lb/>
                  ius
                    <reg norm="circunferentia" type="context">circunferẽtia</reg>
                  , nullidubium eſt, quin
                    <lb/>
                  extra propoſitum circulum tranſitura,
                    <lb/>
                  & in vno tantummodo puncto ipſum
                    <lb/>
                  circulum tactura ſit, qui exiſtat
                    <var>.e.</var>
                    <lb/>
                  figuræ
                    <var>.A.</var>
                  ſeparatum tamen à puncto
                    <lb/>
                  e. figuræ
                    <var>.B</var>
                  . </s>
                  <s xml:id="echoid-s4338" xml:space="preserve">Tunc ſi protracta fue-
                    <lb/>
                  rit linea
                    <var>.d.e.</var>
                  figuræ
                    <var>.B.</var>
                  vſque ad gi
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0374-03a" xlink:href="fig-0374-03"/>
                  rum ellipticum in puncto
                    <var>.g.</var>
                  à quo
                    <lb/>
                  ad punctum
                    <var>.c.</var>
                  ducta etiam ſit linea
                    <lb/>
                    <var>g.c</var>
                  . </s>
                  <s xml:id="echoid-s4339" xml:space="preserve">tunc
                    <reg norm="manifeſtum" type="context">manifeſtũ</reg>
                  erit duas lineas
                    <lb/>
                    <var>d.e.</var>
                  et
                    <var>.e.c.</var>
                  figuræ
                    <var>.A.</var>
                  ſimul iunctas,
                    <lb/>
                  æquales eſſe duabus
                    <var>.d.g.</var>
                  et
                    <var>.g.c.</var>
                  ſi-
                    <lb/>
                  mul poſitis, vt etiam ex .52. tertij
                    <lb/>
                  Pergei facilè videre eſt, ſed ex .21.
                    <lb/>
                  primi Euclid. iam certò ſcimus
                    <var>.d.g.c.</var>
                  longiores eſſe
                    <var>.d.e.c.</var>
                  ſiguræ
                    <var>.B.</var>
                  ergo
                    <var>.d.e.c.</var>
                  figu-
                    <lb/>
                    <var>.A.</var>
                  longiores ſunt
                    <var>.d.e.c.</var>
                  figuræ
                    <var>.B.</var>
                  quod eſt propoſitum.</s>
                </p>
                <div xml:id="echoid-div704" type="float" level="5" n="2">
                  <figure xlink:label="fig-0374-03" xlink:href="fig-0374-03a">
                    <image file="0374-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0374-03"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4340" xml:space="preserve">Quod etiam mihinunc circa hoc ſuccurrit, tibi libenter ſignifico, hoc eſt, quod
                    <lb/>
                  ſicut in ellipſi duæ lineæ
                    <var>.d.e.e.c.</var>
                  figuræ
                    <var>.A.</var>
                  ſimul iunctæ, ſunt ſemper æquales duabus
                    <lb/>
                  lineis
                    <var>.d.g.g.c.</var>
                  in longitudine, ita in circulo duæ
                    <var>.d.e.e.c.</var>
                  figuræ
                    <var>.A.</var>
                  æquales ſunt in
                    <lb/>
                  potentia duabus
                    <var>.d.e.e.c.</var>
                  figurę
                    <var>.B</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4341" xml:space="preserve">Manifeſtum enim primum eſt ex penultima primi in figura
                    <var>.A.</var>
                  quadratum
                    <var>.e.c.</var>
                    <lb/>
                  æquale eſſe duobus quadratis ſcilicet
                    <var>.e.b.</var>
                  et
                    <var>.b.c.</var>
                  & quadratum
                    <var>.e.d.</var>
                  æquale duobus
                    <var>.
                      <lb/>
                    e.b.</var>
                  et
                    <var>.b.d</var>
                  . </s>
                  <s xml:id="echoid-s4342" xml:space="preserve">Quare quadrata
                    <var>.e.c.</var>
                  et
                    <var>.e.d.</var>
                  æqualia ſunt quadratis
                    <var>.e.b.</var>
                  figuræ
                    <var>.A.</var>
                  et
                    <var>.e.
                      <lb/>
                    b.</var>
                  figurę. B et
                    <var>.b.c.</var>
                  et
                    <var>.b.d.</var>
                  hoc eſt duplo quadrati
                    <var>.e.a.</var>
                  (ducta cum fuerit
                    <var>.e.a.</var>
                  perpen-
                    <lb/>
                  dicularis ad
                    <var>.c.b.d.a.</var>
                  ) duplo quadrati
                    <var>.a.b.</var>
                  ex penultima primi, & duplo quadrati
                    <var>.b.
                      <lb/>
                    c</var>
                  . </s>
                  <s xml:id="echoid-s4343" xml:space="preserve">Sed quadrata
                    <var>.d.e.</var>
                  et
                    <var>.e.c.</var>
                  figurę
                    <var>.B.</var>
                  æqualia ſunt duplo quadrati
                    <var>.a.e.</var>
                  & quadrato
                    <var>a.d.</var>
                  </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>