Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (364) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div703" type="section" level="3" n="35">
              <div xml:id="echoid-div703" type="letter" level="4" n="1">
                <pb o="364" rhead="IO. BAPT. BENED." n="376" file="0376" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0376"/>
              </div>
            </div>
            <div xml:id="echoid-div708" type="section" level="3" n="36">
              <div xml:id="echoid-div708" type="letter" level="4" n="1">
                <head xml:id="echoid-head536" xml:space="preserve">DE AVGMENTO PONDERIS CORPORIS
                  <lb/>
                ad ſtateram appenſi, & quadam alia demonſtratione,
                  <lb/>
                & quibuſdam erroribus Tartaleæ.</head>
                <head xml:id="echoid-head537" style="it" xml:space="preserve">Mutio Groto.</head>
                <p>
                  <s xml:id="echoid-s4350" xml:space="preserve">SI ea quæ à me audiuiſti non credis, conſidera quæſo libram ſeu ſtateram
                    <lb/>
                    <var>o.a.</var>
                  cuius centrum non longitudinis ſed ponderum ſit
                    <var>.i.</var>
                  quę ſtatera, vt ori
                    <lb/>
                  zontaliter conſiſtat, oportebit pondus extremitatis
                    <var>.o.</var>
                  ita ſe habere
                    <lb/>
                  ad pondus extremitatis
                    <var>.a.</var>
                  ut
                    <var>.a.i.</var>
                  ſe habet ad
                    <var>.o.i.</var>
                  quod te ſcire puto, ima
                    <lb/>
                  ginemur nunc d uas lineas
                    <var>.a.e.</var>
                  et
                    <var>.o.n.</var>
                  paralle las
                    <reg norm="infinitasque" type="simple">infinitasq́;</reg>
                  & à puncto
                    <var>.n.</var>
                  immobili,
                    <lb/>
                  & fixo extra ſtateram, tranſeat per
                    <var>.i.</var>
                  linea
                    <var>.n.i.e</var>
                  . </s>
                  <s xml:id="echoid-s4351" xml:space="preserve">Cogitemus etiam punctum
                    <var>.e.</var>
                  inter
                    <lb/>
                  ſectionis ipſius
                    <var>.n.i.e.</var>
                  cum
                    <var>.a.e.</var>
                  progredi vniformiter
                    <reg norm="continuòque" type="simple">continuòq́;</reg>
                  ab
                    <var>.a.</var>
                  per lineam
                    <var>.a.e.</var>
                    <lb/>
                  vnde punctum
                    <var>.i.</var>
                  interſectionis ipſius
                    <var>.n.i.e.</var>
                  cum
                    <var>.a.i.o.</var>
                  ſemper vicinius fiet puncto
                    <var>.o.</var>
                    <lb/>
                  nec unquam cum illo vnum erit, quamuis moueatur tempore infinito. </s>
                  <s xml:id="echoid-s4352" xml:space="preserve">Nunc autem
                    <lb/>
                  dico, quod cum ſtateram
                    <var>.o.i.a.</var>
                  oporteat ſemper orizontalem eſſe virtute ponderis,
                    <lb/>
                  o. oportebit pundus
                    <var>.o.</var>
                  in infinitum etiam augeri,
                    <reg norm="quotieſcunque" type="simple">quotieſcunq;</reg>
                  pondus
                    <var>.a.</var>
                  nunquam
                    <lb/>
                  diminui voluerimus vel econtra hoc in infinitum diminui, ſi illud nunquam augeri
                    <lb/>
                  voluerimus.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4353" xml:space="preserve">Sedre vera non putabam te indigere aliqua demonſtratione, quod linea
                    <var>.b.h.</var>
                  di-
                    <lb/>
                  uiſa ſit per æqualia à
                    <unsure/>
                  linea
                    <var>.c.a.</var>
                  cum hæc perpendicularis ſit ab
                    <var>.a.</var>
                  ad baſim
                    <var>.g.d.</var>
                  in
                    <reg norm="triam" type="context">triã</reg>
                    <lb/>
                  gulo orthogonio
                    <var>.g.a.d.</var>
                  & cum ſit
                    <var>.b.h.</var>
                  perpendicularis ad
                    <var>.a.o.</var>
                  ex ſuppoſito quæ
                    <var>.a.
                      <lb/>
                    o.</var>
                  in ſe habet punctum medium baſis
                    <var>.g.d.</var>
                  nec
                    <reg norm="non" type="context">nõ</reg>
                  illud anguli recti
                    <var>.a.</var>
                  quod per ſe cla
                    <lb/>
                  riſſimum eſt, cum iam ſcis
                    <var>.o.</var>
                  eſſe centrum circuli circundantis triangulum
                    <var>.g.a.d.</var>
                  or-
                    <lb/>
                  thogonium, et
                    <var>.g.d.</var>
                  eius diameter, vnde
                    <var>.o.a.</var>
                  æquabitur ipſi
                    <var>.o.g.</var>
                  quapropter angulus
                    <lb/>
                  o.
                    <reg norm="am" type="context">ã</reg>
                  . g. æquabitur angulo
                    <var>.g.</var>
                  ex quinta primi, </s>
                  <s xml:id="echoid-s4354" xml:space="preserve">deinde ex .32. eiuſdem, angulus
                    <var>.h.</var>
                  æqua
                    <lb/>
                  bitur angulo
                    <var>.d.</var>
                  eo quod an gulus
                    <var>.e.</var>
                  rectus eſt, quemadmodum et
                    <var>.a.</var>
                  ſed angulus
                    <var>.d.</var>
                    <lb/>
                  æqualis eſt angulo
                    <var>.g.a.c</var>
                  . </s>
                  <s xml:id="echoid-s4355" xml:space="preserve">& propterea angulus
                    <var>.h.</var>
                  erit etiam æqualis angulo
                    <var>.h.a.u.</var>
                    <lb/>
                  vnde
                    <var>.h.u.</var>
                  æqualis erit ipſi
                    <var>.u.
                      <lb/>
                    a.</var>
                  ex .6. primi, cum poſtea angulus
                    <var>.
                      <lb/>
                      <figure xlink:label="fig-0376-01" xlink:href="fig-0376-01a" number="417">
                        <image file="0376-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0376-01"/>
                      </figure>
                    o.a.d.</var>
                  æqualis ſitangulo
                    <var>.d.</var>
                  ex quin­
                    <lb/>
                  ta primi erit angulus
                    <var>.a.b.e.</var>
                  æqua-
                    <lb/>
                  lis angulo
                    <var>.g.</var>
                  ex .32. dicta, eo quod
                    <lb/>
                  e. rectus eſt, & ex eadem æqualis
                    <lb/>
                  erit angulo
                    <var>.d.a.c.</var>
                  vnde
                    <var>.u.b.</var>
                  erit
                    <lb/>
                  æqualis ipſi
                    <var>.u.a.</var>
                  ex .6. dicti, & ideo
                    <lb/>
                  æqualis eric ipſi
                    <var>.u.h</var>
                  . </s>
                  <s xml:id="echoid-s4356" xml:space="preserve">Reliqua ve-
                    <lb/>
                  rò illius propoſitionis credo ex te
                    <lb/>
                  omnia poſſe
                    <reg norm="intelligere" type="context">ĩtelligere</reg>
                  , excepto,
                    <reg norm="quod" type="simple">ꝙ</reg>
                    <lb/>
                  vt tibi ſignificaui ſi à
                    <reg norm="puncto" type="context">pũcto</reg>
                    <var>.i.</var>
                  com-
                    <lb/>
                  muni ipſi
                    <var>.a.c.u.</var>
                  & circunferentiæ,
                    <lb/>
                  ducta fuerit
                    <var>.i.x.</var>
                  ad
                    <reg norm="punctum" type="context">pũctum</reg>
                    <var>.x.</var>
                  com
                    <lb/>
                  mune vni parallelæ à
                    <reg norm="puncto" type="context">pũcto</reg>
                    <var>.g.</var>
                  ipſi
                    <lb/>
                    <var>h.b.</var>
                  & circunferentiæ, quod di-
                    <lb/>
                  cta
                    <var>.i.x.</var>
                  ad rectos erit ipſi
                    <var>.a.b.d.</var>
                  eo
                    <lb/>
                  quod cum angulus
                    <var>.a.g.x.</var>
                  æqualis </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>