Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (367) of 445 > >|
EPISTOL AE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div713" type="section" level="3" n="37">
              <div xml:id="echoid-div713" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4379" xml:space="preserve">
                    <pb o="367" rhead="EPISTOL AE." n="379" file="0379" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0379"/>
                  e
                    <unsure/>
                    <var>.g.</var>
                  vnde angulus
                    <var>.g.e.q.</var>
                  æqualis erit angulo
                    <var>.b.a.g.</var>
                  portionis, cum duplus ſit angulo
                    <lb/>
                    <var>q.p.g.</var>
                  medietati anguli ipſius portionis ex .19. tertij, ita quod angulus
                    <var>.q.e.g.</var>
                  nobis
                    <lb/>
                  cognitus erit, & ſimiliter arcus
                    <var>.g.q.</var>
                  & conſequenter ar-
                    <lb/>
                  cus
                    <var>.p.g.</var>
                  reſiduum medij circuli, & ſic
                    <var>.m.g.</var>
                  eius ſinus re
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0379-01a" xlink:href="fig-0379-01"/>
                  ctus, & etiam chorda
                    <var>.p.g.</var>
                  vt dupla ſinus dimidij arcus
                    <var>.
                      <lb/>
                    p.g.</var>
                  & ſic
                    <var>.p.m.</var>
                  eius ſinus verſus, vel vt tertium latus trian
                    <lb/>
                  guli orthogonij
                    <var>.p.g.m.</var>
                  vnde nobis cognita erit propor
                    <lb/>
                  tio ipſius
                    <var>.b.g.</var>
                  (quæ dupla eſt ipſi
                    <var>.m.g.</var>
                  ) ad
                    <var>.m.p.</var>
                  & quia
                    <lb/>
                  productum
                    <var>.p.m.</var>
                  in
                    <var>.m.q.</var>
                  æquale eſt ei, quod fit ex
                    <var>.b.m.</var>
                    <lb/>
                  in
                    <var>m.g.</var>
                  ex .34. tertij, quapropter nobis cognita erit pars
                    <lb/>
                    <var>q.m.</var>
                  quæ cum
                    <var>.p.m.</var>
                  complet totum diametrum
                    <var>.q.p.</var>
                  vn
                    <lb/>
                  de nobis cognita erit proportio ipſius
                    <var>.b.g.</var>
                  ad
                    <var>.q.p.</var>
                  qua
                    <lb/>
                  mediante cognoſcemus diametrum ſecundum partes il
                    <lb/>
                  las quibus propoſita ſuerit
                    <var>.b.g</var>
                  .</s>
                </p>
                <div xml:id="echoid-div713" type="float" level="5" n="1">
                  <figure xlink:label="fig-0379-01" xlink:href="fig-0379-01a">
                    <image file="0379-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0379-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4380" xml:space="preserve">Hoc autem problema non in numeris ſed in continuo ab Euclid. ponitur in .32
                    <unsure/>
                  .
                    <lb/>
                  tertij.</s>
                </p>
              </div>
              <div xml:id="echoid-div715" type="letter" level="4" n="2">
                <head xml:id="echoid-head542" style="it" xml:space="preserve">De inuentione alterius trianguli conditionati.</head>
                <head xml:id="echoid-head543" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4381" xml:space="preserve">QVotieſcunque etiam inuenire voluerimus triangulum aliquem, puta
                    <var>.n.q.o.</var>
                    <lb/>
                  æqualem triangulo
                    <var>.t.</var>
                  (exempli gratia) propoſito, qui habeat angulum
                    <var>.n.</var>
                  æ-
                    <lb/>
                  qualem angalo
                    <var>.a.</var>
                  dato, latera vero continentia ipſum angulum
                    <var>.n.</var>
                  ſint inuicem pro-
                    <lb/>
                  portionata vt
                    <var>.x.</var>
                  et
                    <var>.y.</var>
                  ita faciemus, accipiemus lineam
                    <var>.n.m.</var>
                  cuius volueris magnitu-
                    <lb/>
                  dinis, ſupra quam conſtituemus triangulum
                    <var>.m.n.p.</var>
                  æqualem triangulo
                    <var>.t.</var>
                  hac metho-
                    <lb/>
                  do, hoc eſt prolungando latus
                    <var>.r.z.</var>
                  trianguli
                    <var>.t.</var>
                  quod ſit
                    <var>.r.e.</var>
                  ita vt duplum ſit ipſi
                    <var>.r.z.</var>
                    <lb/>
                  ducendo poſtea
                    <var>.c.e.</var>
                  habebimus ex .38. primi triangulum
                    <var>.t.</var>
                  eſſe dimidium totius
                    <lb/>
                  trianguli
                    <var>.r.c.e.</var>
                  deſignabimus deinde ex .44. dicti ſuperficiem
                    <var>.p.n.m.b.</var>
                  parallelo
                    <lb/>
                  grammam
                    <reg norm="æqualemque" type="simple">æqualemq́;</reg>
                  triangu
                    <lb/>
                  lo
                    <var>.r.c.e.</var>
                  habentem angulum
                    <var>.
                      <lb/>
                      <anchor type="figure" xlink:label="fig-0379-02a" xlink:href="fig-0379-02"/>
                    n.</var>
                  æqualem angulo
                    <var>.a.</var>
                  ducatur
                    <lb/>
                  poſtea
                    <var>.p.m.</var>
                  & habebimus
                    <reg norm="triam" type="context">triã</reg>
                    <lb/>
                  gulum
                    <var>.m.n.p.</var>
                  æqualem
                    <var>.t.</var>
                  cum
                    <lb/>
                  angulo
                    <var>.n.</var>
                  æquali angulo
                    <var>.a.</var>
                  pro
                    <lb/>
                  ducatur poſtea
                    <var>.n.p.</var>
                  ita vt
                    <var>.n.K.</var>
                    <lb/>
                  ſe habeat .ad
                    <var>.n.m.</var>
                  quemadmo
                    <lb/>
                  dum
                    <var>.x.</var>
                  ad
                    <var>.y.</var>
                  quod erit facilli-
                    <lb/>
                  mum producendo
                    <var>.n.m.</var>
                  et
                    <var>.n.
                      <lb/>
                    K.</var>
                  indeterminatè ſi oportuerit,
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4382" xml:space="preserve">deinde eas ad æqualitatem ſe-
                    <lb/>
                  can
                    <unsure/>
                  do ipſis
                    <var>.x.</var>
                  et
                    <var>.y.</var>
                  efficiendo
                    <lb/>
                  exempli gratia quod
                    <var>.n.i.</var>
                  ſit
                    <lb/>
                  æqualis ipſi
                    <var>.x.</var>
                  et
                    <var>.n.u.</var>
                  ipſi
                    <var>.y.</var>
                  du
                    <lb/>
                  cendo poſtea
                    <var>.u.i.</var>
                  deinde à puncto
                    <var>.m.</var>
                  ducendo
                    <var>.m.K.</var>
                  æquidiſtanter
                    <var>.u.i.</var>
                  ex .31.
                    <lb/>
                  primi. </s>
                  <s xml:id="echoid-s4383" xml:space="preserve">& ſic habebimus ex .4. ſexti proportionem
                    <var>.x.</var>
                  ad
                    <var>.y.</var>
                  eſſe inter
                    <var>.n.K.</var>
                  et
                    <var>.n.</var>
                  </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>