Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (26) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div87" type="math:theorem" level="3" n="40">
              <p>
                <s xml:id="echoid-s355" xml:space="preserve">
                  <pb o="26" rhead="IO. BAPT. BENED." n="38" file="0038" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0038"/>
                numerum inquam, cui differentia duorum quæſitorum æquanda eſt, in ſeipſum
                  <lb/>
                multiplicare, atque huic quadrato, ſecundum numerum propoſitum iungere, cui,
                  <lb/>
                productum numerorum quæſitorum æquale eſſe debet, & ex hac ſumma eruere qua
                  <lb/>
                dratam radicem, quæ coniuncta dimidio primi numeri propoſiti, dabit maiorem
                  <lb/>
                duorum numerorum & ex eadem radice detracto dimidio primi numeri, minorem
                  <lb/>
                numerum duorum quæſitorum.</s>
              </p>
              <p>
                <s xml:id="echoid-s356" xml:space="preserve">Exempli gratia, ſi proponeretur .12. cui differentia vnius numeri ab altero æqua-
                  <lb/>
                ri deberet, tum proponeretur .64. cui productum multiplicationis duorum quæſi-
                  <lb/>
                torum ſimul
                  <reg norm="æquandum" type="context">æquãdum</reg>
                eſſet. </s>
                <s xml:id="echoid-s357" xml:space="preserve">Dimidium primi numeri in ſeipſum multiplicaremus,
                  <lb/>
                  <reg norm="proueniretque" type="simple">proueniretq́;</reg>
                  <reg norm="quadratum" type="context">quadratũ</reg>
                .36. cui coniuncto ſecundo, nempe .64. totum eſſet .100.
                  <lb/>
                ex quo detracta quadrata radice .10. etipſi coniuncto ſenario, dimidio primi nume
                  <lb/>
                ri, & ex eadem detracto eodem dimidio .6. pro maiore numero proueniret .16. &
                  <lb/>
                pro minore .4.</s>
              </p>
              <p>
                <s xml:id="echoid-s358" xml:space="preserve">Cuius rei ſpeculatio hæc eſt. </s>
                <s xml:id="echoid-s359" xml:space="preserve">Sit
                  <var>.e.o.</var>
                differentia cognita duorum incognitorum
                  <lb/>
                numerorum
                  <var>.a.o.</var>
                et
                  <var>.a.e.</var>
                quorum productum datum ſiue cognitum ſit
                  <var>.a.s</var>
                : conſide-
                  <lb/>
                remus nunc
                  <var>.e.i.</var>
                dimidium
                  <var>.e.o.</var>
                datæ differentiæ, & ex compoſito
                  <var>.a.i.</var>
                imaginetur
                  <lb/>
                quadratum
                  <var>.a.x.</var>
                in quo protracta ſit
                  <var>.t.u.</var>
                æquidiſtans lateri
                  <var>.a.i.</var>
                & tam ab ipſa
                  <var>.a.i.</var>
                re
                  <lb/>
                mota, quam
                  <var>.x.i.</var>
                ab
                  <var>.s.e.</var>
                vnde
                  <var>.t.e.</var>
                quadratum erit
                  <var>.e.i.</var>
                  <lb/>
                dimidiæ ſcilicet differentiæ datæ
                  <var>.e.o.</var>
                et
                  <var>.t.n.</var>
                rectan-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0038-01a" xlink:href="fig-0038-01"/>
                gulum æquale erit rectangulo
                  <var>.n.c.</var>
                vt cuilibet licet
                  <lb/>
                per ſe conſiderare, vnde ſequitur gnomonem
                  <var>.e.r.t.</var>
                  <lb/>
                æqualem eſſe producto
                  <var>.a.s.</var>
                ideo cognitus, qui
                  <reg norm="quidem" type="context">quidẽ</reg>
                  <lb/>
                gnomon, ſi coniunctus fuerit quadrato
                  <var>.e.t.</var>
                cognito
                  <lb/>
                ex radice
                  <var>.e.i.</var>
                cognita (vt dimidia toralis differentię
                  <var>.
                    <lb/>
                  e.o.</var>
                datæ) habebimus quadratum totale
                  <var>.a.x.</var>
                cogni-
                  <lb/>
                tum, & ita eius radicem
                  <var>.a.i.</var>
                cognitam & reliqua om
                  <lb/>
                nia conſequenter quæ quidem ſpeculatio eadem eſt
                  <lb/>
                quæ .6. ſecundi ſeu .8. noni Euclidis.</s>
              </p>
              <div xml:id="echoid-div87" type="float" level="4" n="1">
                <figure xlink:label="fig-0038-01" xlink:href="fig-0038-01a">
                  <image file="0038-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0038-01"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s360" xml:space="preserve">Poteris tamen ex modo & rationibus præceden-
                  <lb/>
                ti theoremate allatis, hocipſum concludere.</s>
              </p>
            </div>
            <div xml:id="echoid-div89" type="math:theorem" level="3" n="41">
              <head xml:id="echoid-head57" xml:space="preserve">THEOREMA
                <num value="41">XLI</num>
              .</head>
              <p>
                <s xml:id="echoid-s361" xml:space="preserve">CVR ij, qui aliquo propoſito numero, inuenturi ſunt duos numeros inter ſe
                  <lb/>
                differentes, quorum quadratorum ſumma altero numero propoſito æqualis
                  <lb/>
                ſit, rectè primum numerum propoſitum in ſeipſum multiplicant, quod quadratum
                  <lb/>
                exſecundo numero
                  <reg norm="detrahunt" type="context">detrahũt</reg>
                , & dimidium reſidui ſumunt, quod productum erit
                  <lb/>
                multiplicationis duorum numerorum interſe, in reliquis præcedentis theorematis
                  <lb/>
                ordinem ſequuntur.</s>
              </p>
              <p>
                <s xml:id="echoid-s362" xml:space="preserve">Exempli gratia, ſi proponeretur .12. tanquam numerus, cui differentia duorum
                  <lb/>
                numerorum quæſitorum æquanda eſt, proponerentur præterea .272. quibus ſum-
                  <lb/>
                ma quadratorum duorum numerorum quæſitorum æquari deberet, oporteret ſanè
                  <lb/>
                primum numerum, nempe .12. in ſeipſum multiplicare, cuius
                  <reg norm="quadratum" type="context">quadratũ</reg>
                hoc loco
                  <lb/>
                eſſet .144. atque hoc detrahere ex ſecundo numero, ſupereſſet .128. ſumpto
                  <lb/>
                deinde dimidio huiuſce numeri, népe .64. producto in quam duorum numerorum
                  <lb/>
                  <reg norm="quæſitorum" type="context">quæſitorũ</reg>
                . </s>
                <s xml:id="echoid-s363" xml:space="preserve">Cum hoc .64. proſtea et duodenario primo propoſito numero, præceden
                  <lb/>
                tis theorematis ordinem ſequeremur.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>