Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (368) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div713" type="section" level="3" n="37">
              <div xml:id="echoid-div715" type="letter" level="4" n="2">
                <p>
                  <s xml:id="echoid-s4383" xml:space="preserve">
                    <pb o="368" rhead="IO. BAPT. BENED." n="380" file="0380" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0380"/>
                  m. inuenies poſtea ex .9. eiuſ-
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0380-01a" xlink:href="fig-0380-01"/>
                  dem lineam aliquam mediam
                    <lb/>
                  proportionalem inter
                    <var>.n.K.</var>
                  et
                    <var>.
                      <lb/>
                    n.p.</var>
                  quæ ſit
                    <var>.n.o.</var>
                  duces poſtea
                    <lb/>
                    <var>o.q.</var>
                  parallelam ipſi
                    <var>.m.K.</var>
                  & ha
                    <lb/>
                  bebis propoſitum, eo quod
                    <reg norm="cum" type="context">cũ</reg>
                    <lb/>
                  ſit proportio trianguli
                    <var>.n.m.K.</var>
                    <lb/>
                  ad triangulum
                    <var>.n.m.p.</var>
                  vt
                    <var>.n.K.</var>
                    <lb/>
                  ad
                    <var>.n.p.</var>
                  ex prima ſexti, duo
                    <reg norm="triam" type="context">triã</reg>
                    <lb/>
                  guli
                    <var>.m.p.n.</var>
                  et
                    <var>.n.q.o.</var>
                  æquales
                    <lb/>
                  erunt inuicem, ex .17. eiuſdem
                    <lb/>
                  & ex .9. quinti, & proportio
                    <var>.
                      <lb/>
                    o.n.</var>
                  ad
                    <var>.n.q.</var>
                  erit, vt
                    <var>.x.</var>
                    <unsure/>
                  ad
                    <var>.y.</var>
                  ex
                    <num value="11">.
                      <lb/>
                    11.</num>
                  dicti, cum ex .4. ſexti ſit vt
                    <var>.
                      <lb/>
                    n.k.</var>
                  ad
                    <var>.n.m</var>
                  .</s>
                </p>
                <div xml:id="echoid-div715" type="float" level="5" n="1">
                  <figure xlink:label="fig-0379-02" xlink:href="fig-0379-02a">
                    <image file="0379-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0379-02"/>
                  </figure>
                  <figure xlink:label="fig-0380-01" xlink:href="fig-0380-01a">
                    <image file="0380-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0380-01"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div717" type="letter" level="4" n="3">
                <head xml:id="echoid-head544" style="it" xml:space="preserve">De producto conditionato.</head>
                <head xml:id="echoid-head545" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4384" xml:space="preserve">PRoponis deinde mihi duas rectas lineas, vni quarum, vis vt aliam quandam di-
                    <lb/>
                  rectè coniungam, ita quod productum huius aggregati in lineam adiunctam
                    <lb/>
                  æquale ſit quadrato alterius.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4385" xml:space="preserve">Vt exempli gratia ſi fuerint duæ lineæ
                    <var>.e.d.</var>
                  et
                    <var>.e.f.</var>
                  opor-
                    <lb/>
                    <reg norm="teretque" type="simple">teretq́;</reg>
                  nos ad lineam
                    <var>.e.f.</var>
                  aliam lineam puta
                    <var>.f.c.</var>
                  vel
                    <var>.e.b.</var>
                    <reg norm="iun­ gere" type="context">iũ­
                      <lb/>
                      <anchor type="figure" xlink:label="fig-0380-02a" xlink:href="fig-0380-02"/>
                    gere</reg>
                  , ita longam, vt productum totius compoſiti
                    <var>.e.c.</var>
                  vel
                    <var>.
                      <lb/>
                    f.b.</var>
                  in
                    <var>.f.c.</var>
                  vel
                    <var>.e.b.</var>
                  eſſet æquale quadrato ipſius
                    <var>.e.d</var>
                  .</s>
                </p>
                <div xml:id="echoid-div717" type="float" level="5" n="1">
                  <figure xlink:label="fig-0380-02" xlink:href="fig-0380-02a">
                    <image file="0380-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0380-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4386" xml:space="preserve">Hoc enim nu llius eſſet difficultatis, eo quod
                    <reg norm="quotieſcun- que" type="context">quotieſcũ-
                      <lb/>
                    que</reg>
                    <var>.e.d.</var>
                  coniuncta erit cum
                    <var>.e.f.</var>
                  ad rectos,
                    <reg norm="diuiſaque" type="simple">diuiſaq́;</reg>
                  per me
                    <lb/>
                  dium à puncto
                    <var>.a.</var>
                  à quo ducta
                    <var>.a.d.</var>
                  deinde ſecundum ſemi-
                    <lb/>
                  diametrum
                    <var>.a.d.</var>
                  deſignato circulo
                    <var>.b.d.c.</var>
                  & protracta
                    <var>.e.f.</var>
                    <lb/>
                  à qua volueris parte vſque ad circunferentiam in
                    <reg norm="puncto" type="context">pũcto</reg>
                    <var>.c.</var>
                    <lb/>
                  ſeu in puncto
                    <var>.b.</var>
                  habebimus intentum, eò quod ſi produ-
                    <lb/>
                  cta fuerit
                    <var>.e.f.</var>
                  etiam ab alia parte, vſque ad circunferentiam, habebimus
                    <var>.b.e.</var>
                  æqua-
                    <lb/>
                  lem ipſi
                    <var>.f.c.</var>
                  ex communi conceptu, & productum
                    <var>.e.c.</var>
                  in
                    <var>.e.b.</var>
                  æqualem quadra-
                    <lb/>
                  to ipſius
                    <var>.e.d.</var>
                  ex .34. tertij, cum ex .3. eiuſdem
                    <var>.e.d.</var>
                  medietas ſit chordæ arcus dupli
                    <lb/>
                    <var>b.d</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4387" xml:space="preserve">De lapſu verò lapidis verſus mundi centrum, dum ipſum attingere, ac præterire
                    <lb/>
                  poſſet, de quo me interrogas. </s>
                  <s xml:id="echoid-s4388" xml:space="preserve">Dico Nicolaum Tartaleam, nec non Franciſcum
                    <lb/>
                  Maurolicum rectè ſenſiſſe, malè verò Alexandrum Piccolhomineum, & exemplum
                    <lb/>
                  Maurolici optimum eſſe, quod tamen ſi capere non potes, crede ſaltem authoritati
                    <lb/>
                  bus talium virorum, qui tantum in ijs ſcientijs ſuperant ipſum Alexandrum Piccol-
                    <lb/>
                  homineum, quantum à Sole cætera ſuperantur aſtra.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4389" xml:space="preserve">Lapis igitur ille tranſiret centrum,
                    <reg norm="reddiretque" type="simple">reddiretq́;</reg>
                  , cum diminutione tamen motus im
                    <lb/>
                  preſſi, eo fermè modo vt ſcribunt iudicioſiſſimi illi viri, donec poſt multas reddi-
                    <lb/>
                  tiones ſurſum,
                    <reg norm="deorſumque" type="simple">deorſumq́;</reg>
                  quieſceret circa centrum mundi. </s>
                  <s xml:id="echoid-s4390" xml:space="preserve">Lucidioris tamen intelli­ </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>