Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (376) of 445 > >|
IO. BABPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div730" type="section" level="3" n="41">
              <div xml:id="echoid-div730" type="letter" level="4" n="1">
                <pb o="376" rhead="IO. BABPT. BENED." n="388" file="0388" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0388"/>
                <p>
                  <s xml:id="echoid-s4447" xml:space="preserve">Poſſumus etiam probare quod periferia quadrati æqualis triangulo æquilatero
                    <lb/>
                  minor ſit periferia ipſius trianguli æquilateri. </s>
                  <s xml:id="echoid-s4448" xml:space="preserve">Cogita triangulum æquilaterum hic
                    <lb/>
                  ſubſcriptum
                    <var>.d.l.q.</var>
                  cuius baſis
                    <var>.l.q.</var>
                  diuiſa ſit per æqualia à perpendiculari
                    <var>.d.o.</var>
                    <reg norm="deſcri- ptumque" type="context simple">deſcri­
                      <lb/>
                    ptũq́;</reg>
                  ſit rectangulum
                    <var>.o.g.</var>
                  quod æquale erit triangulo
                    <var>.d.l.q.</var>
                  ſed periferia trianguli
                    <lb/>
                  maior eſt periferia rectanguli, nam
                    <var>.l.q.</var>
                  æqualis eſt
                    <var>.o.q.</var>
                  cum
                    <var>.d.g.</var>
                  ſed
                    <var>.q.d.</var>
                  maior eſt
                    <var>.o.
                      <lb/>
                    d.</var>
                  ex .18. primi, vnde
                    <var>.l.d.</var>
                  maior etiam
                    <var>.q.g.</var>
                  cum ex .34. dicti latera oppoſita ipſius re
                    <lb/>
                  ctanguli ſint inuicem æqualia, accipiamus poſtea
                    <var>.e.c.</var>
                  æqualem
                    <var>.o.d.</var>
                  et
                    <var>.c.h.</var>
                  indire-
                    <lb/>
                  ctum æqualem
                    <var>.o.q.</var>
                  circa quem diametrum
                    <var>.e.h.</var>
                  intelligatur circulus
                    <var>.e.i.h.k.</var>
                  et. à pun­
                    <lb/>
                  cto
                    <var>.c.</var>
                  dirigatur perpendicularis
                    <var>.k.i.</var>
                  ad
                    <var>.e.h.</var>
                  vnde ex .3. tertij
                    <var>.c.i.</var>
                  æqualis erit
                    <var>.c.k.</var>
                  & ex
                    <lb/>
                  34. quod fit ex
                    <var>.c.i.</var>
                  in
                    <var>.c.k.</var>
                  hoc eſt quadratum ipſius
                    <var>.c.i.</var>
                  æquale erit ei quod fit .ex
                    <var>.e.c.</var>
                    <lb/>
                  in
                    <var>.c.h.</var>
                  hoc eſt rectangulo
                    <var>.g.o.</var>
                  hoc eſt triangulo
                    <var>.d.l.q.</var>
                  ſed
                    <var>.e.h.</var>
                  eſt dimidium perife-
                    <lb/>
                  rię ipſius rectanguli
                    <var>.g.o.</var>
                  quæ minor eſt di midio periferiæ trianguli
                    <var>.d.l.q.</var>
                  vt vidimus
                    <lb/>
                  et
                    <var>.i.k.</var>
                  eſt dimidium periferię quadrati ipſius
                    <var>.i.c.</var>
                  & minor etiam ipſa
                    <var>.e.h.</var>
                  ex .14. tertij
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4449" xml:space="preserve">quare verum eſt propoſitum.</s>
                </p>
                <figure position="here">
                  <image file="0388-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0388-01"/>
                </figure>
                <p>
                  <s xml:id="echoid-s4450" xml:space="preserve">Sed quando periferiæ ſunt inuicem æquales, poſſumus etiam breuiter videre id
                    <lb/>
                  quod ſupradiximus, hoc eſt, quod quadratum, maius ſit triangulo æquilatero. </s>
                  <s xml:id="echoid-s4451" xml:space="preserve">Nam
                    <lb/>
                  cum
                    <var>.b.g.</var>
                  ſeſquitertia ſit ad
                    <var>.b.a.</var>
                  ergo
                    <var>.b.g.</var>
                  erit vt .4. et
                    <var>.b.a.</var>
                  ut .3. vnde
                    <var>.b.q.</var>
                  erit vt .16
                    <lb/>
                  et
                    <var>.b.l.</var>
                  vt .9. et
                    <var>.c.q.</var>
                  vt .8. </s>
                  <s xml:id="echoid-s4452" xml:space="preserve">quare
                    <var>.b.l.</var>
                  maius erit ipſo
                    <reg norm="rectangulo" type="context">rectãgulo</reg>
                    <var>.c.q.</var>
                  ſed
                    <var>.c.q.</var>
                  maius eſt
                    <reg norm="triam" type="context">triã</reg>
                    <lb/>
                  gulo
                    <var>.b.o.g.</var>
                  cum
                    <var>.q.g.</var>
                  quæ æqualis eſt
                    <var>.o.g.</var>
                  maior ſit
                    <var>.o.c.</var>
                  ex .18. vel penultima primi,
                    <lb/>
                  nam ſi
                    <var>.q.g.</var>
                  æqualis eſſet
                    <var>.o.c.</var>
                  </s>
                  <s xml:id="echoid-s4453" xml:space="preserve">tunc
                    <var>.c.q.</var>
                  æqualis eſſet triangulo
                    <var>.b.o.g.</var>
                  ex .41. primi.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4454" xml:space="preserve">Alia etiam via maiores noſtri vſi ſunt quæ generalis eſt vt in Theone ſupra Al-
                    <lb/>
                  mageſtum videre eſt, medijs perpendicularibus à centris ad latera figurarum, ſed
                    <lb/>
                  quia
                    <reg norm="differentia" type="context">differẽtia</reg>
                  longitudinum ipſarum perpendicularium alio medio inueniri poteſt,
                    <lb/>
                  eo quo ipſi vſi ſunt, prætermittere nolo quin tibi ſcribam.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4455" xml:space="preserve">Ego enim ita diſcurro.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4456" xml:space="preserve">Sint duæ figuræ iſoperimetrę æquilaterę & æquiangulæ, puta primò trian-
                    <lb/>
                  gulum & quadratum quorum centra ſint
                    <var>.e.</var>
                  et
                    <var>.o.</var>
                  à quibus centris ad latera ſint per-
                    <lb/>
                  pendiculares
                    <var>.e.n.</var>
                  et
                    <var>.o.u.</var>
                  vnde
                    <var>.n.</var>
                  et
                    <var>.u.</var>
                  diuident latera per æqualia vt ſcis, ducantur
                    <lb/>
                  poſtea
                    <var>.e.t.</var>
                  et
                    <var>.o.a.</var>
                  ad angulos dictorum laterum, vnde habebimus angulum
                    <var>.o.a.u.</var>
                    <reg norm="di- midium" type="context">di-
                      <lb/>
                    midiũ</reg>
                  recti, et
                    <var>.e.t.n.</var>
                  tertia pars vnius recti, vt ex te ipſo videre potes, </s>
                  <s xml:id="echoid-s4457" xml:space="preserve">quare angulus </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>