Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
401 389
402 390
403 391
404 392
405 393
406 394
407 395
408 396
409 397
410 398
411 399
412 400
413 401
414 402
415 403
416 404
417 405
418 406
419 407
420 408
< >
page |< < (382) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div737" type="section" level="3" n="42">
              <div xml:id="echoid-div737" type="letter" level="4" n="1">
                <pb o="382" rhead="IO. BAPT. BENED." n="394" file="0394" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0394"/>
                <p>
                  <s xml:id="echoid-s4523" xml:space="preserve">In eo quod à me petis, mittendo te ad Eutotium, tibi non ſatisfacerem, cum Eu-
                    <lb/>
                  totius citet ſextum librum Pergei, quem nunquam vidimus,
                    <reg norm="ſupponatque" type="simple">ſupponatq́;</reg>
                  ea, quæ nec
                    <lb/>
                  ipſe nec alius vnquam quod ſcimus probauit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4524" xml:space="preserve">Deſideras enim demonſtrationem illius quod Archimedes dicit inter primam,
                    <lb/>
                  & ſecundam propoſitionem ſecundi libri, vbi tractat de centris grauium, propte-
                    <lb/>
                  rea quod illud ſupponit pro manifeſto.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4525" xml:space="preserve">Sit enim figura hic ſubſcripta, ferè ſimilis parabolæ poſitæ in .2. propoſitione di
                    <lb/>
                  cti libri, vt in impreſſione Baſileenſi habetur,
                    <reg norm="ſintque" type="simple">ſintq́;</reg>
                  diuiſæ duæ
                    <var>.a.b.</var>
                  et
                    <var>.b.c.</var>
                  per æqua
                    <lb/>
                  lia à punctis
                    <var>.x.</var>
                  et
                    <var>.u.</var>
                    <reg norm="protractisque" type="simple">protractisq́;</reg>
                    <var>.f.x.</var>
                  et
                    <var>.u.i.</var>
                  ad
                    <var>.b.d.</var>
                  quæ inuicem etiam erunt parallelę
                    <lb/>
                  ex .30. primi Eucli. </s>
                  <s xml:id="echoid-s4526" xml:space="preserve">vnde ipſæ etiam, diametri erunt ipſarum portionum: </s>
                  <s xml:id="echoid-s4527" xml:space="preserve">vt ex eo col
                    <lb/>
                  ligere eſt, quod in .49. primi lib. Pergei probatur. </s>
                  <s xml:id="echoid-s4528" xml:space="preserve">Imaginando poſtea ad puncta
                    <var>.b.
                      <lb/>
                    f.</var>
                  er
                    <unsure/>
                    <var>.i.</var>
                  tres contingentes, manifeſtum erit punctum
                    <var>.b.</var>
                  illud eſſe quod terminat alti-
                    <lb/>
                  tudinem huiuſmodi portionis, et
                    <var>.f.</var>
                  et
                    <var>.i.</var>
                  terminantia altitudines partialium, ex .5. ſe­
                    <lb/>
                  cundi ipſius Pergei, eo quod dictæ contingentes paralellæ erunt ipſis baſibus, vnde
                    <lb/>
                  trianguli inſcripti, eaſdem habebunt altitudines, quas portiones ipſæ, quod erit ex
                    <lb/>
                  mente Archimedis. </s>
                  <s xml:id="echoid-s4529" xml:space="preserve">Et ſic deinceps poteris multiplicare angulos ſiguræ rectilineæ
                    <lb/>
                  in parabola, quæ deſignata erit vt deſiderat Archimedes, qui quidem dicit, quod
                    <lb/>
                  protractæ cum fuerint aliæ deinceps poſt
                    <var>.f.i.</var>
                  ipſæ inuicem ęquidiſtantes
                    <reg norm="erunt" type="context">erũt</reg>
                  , diuiſę-
                    <lb/>
                  q́ue peræqualia ab
                    <var>.d.b.</var>
                  quod
                    <reg norm="quanuis" type="context">quãuis</reg>
                    <reg norm="verum" type="context">verũ</reg>
                  ſit,
                    <reg norm="tantum" type="wordlist/context">tñ</reg>
                  ab Eutotio non ſatis
                    <reg norm="demonſtratum" type="context context">demõſtratũ</reg>
                    <lb/>
                  eſt, cum ſupponat
                    <var>.a.f.b.</var>
                  æqualem eſſe ipſi
                    <var>.b.i.c.</var>
                  probare volens eius diametros æqua
                    <lb/>
                  les eſſe abſque aliqua citata ratione, quæ quidem ratio eſſet conuerſum .4. propoſi-
                    <lb/>
                  tionis libri de conoidalibus. </s>
                  <s xml:id="echoid-s4530" xml:space="preserve">Sed oporteret nos
                    <reg norm="etiam" type="context">etiã</reg>
                  videre .6. librum ipſius Pergei,
                    <lb/>
                  & propterea tibi non ſatisfacerem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4531" xml:space="preserve">Eſto igitur, ut inuenta ſit linea
                    <var>.K.</var>
                  cuius productum in
                    <var>.u.i.</var>
                  æquale ſit qua drato ip
                    <lb/>
                  ſius
                    <var>.u.c.</var>
                  inuenta etiam ſit linea
                    <var>.h.</var>
                  cuius productum cum
                    <var>.f.x.</var>
                  æquale ſit quadrato ip-
                    <lb/>
                  ſius
                    <var>.a.x.</var>
                  vnde ex conuerſo .49. primi ipſius Pergei, proportio ipſius
                    <var>.K.</var>
                  ad
                    <var>.b.c.</var>
                  erit ut
                    <lb/>
                  ipſius
                    <var>.b.c.</var>
                  ad
                    <var>.b.d.</var>
                  & ipſius
                    <var>.h.</var>
                  ad
                    <var>.a.b.</var>
                  vt ipſius
                    <var>.a.b.</var>
                  ad
                    <var>.b.d</var>
                  . </s>
                  <s xml:id="echoid-s4532" xml:space="preserve">Erit igitur ex .16. ſexti Eucl.
                    <lb/>
                  quadratum
                    <var>.b.c.</var>
                  æquale producto ipſius
                    <var>.K.</var>
                  in
                    <var>.b.d.</var>
                  & quadratum
                    <var>.a.b.</var>
                  æquale produ-
                    <lb/>
                  cto ipſius
                    <var>.h.</var>
                  in
                    <var>.b.d.</var>
                  & ex prima ſexti, ita erit ipſius
                    <var>.K.</var>
                  ad
                    <var>.h.</var>
                  vt producti quod fit ex
                    <var>.K.</var>
                    <lb/>
                  in
                    <var>.b.d.</var>
                  ad productum ipſius
                    <var>.h.</var>
                  in
                    <var>.b.d.</var>
                  hoc eſt vt quadrati ipſius
                    <var>.b.c.</var>
                  ad quadratum ip
                    <lb/>
                  ſius
                    <var>.b.a.</var>
                  ex .16. et .11. quinti, hoc eſt vt quadrati ipſius
                    <var>.u.c.</var>
                  ad quadratum ipſius
                    <var>.a.x.</var>
                    <lb/>
                  hoc eſt ut productum ipſius
                    <var>.k.</var>
                  in
                    <var>.u.i.</var>
                  ad productnm ipſius
                    <var>.h.</var>
                  in
                    <var>.x.f</var>
                  . </s>
                  <s xml:id="echoid-s4533" xml:space="preserve">Nunc ſi ipſius
                    <var>.k.</var>
                    <lb/>
                  ad
                    <var>.h.</var>
                  c
                    <unsure/>
                  ſt vt producti ipſius
                    <var>.K.</var>
                  in
                    <var>.u.i.</var>
                  ad productum ipſius
                    <var>.h.</var>
                  in
                    <var>.f.x.</var>
                  ergo ex .24. ſexti,
                    <lb/>
                  & communi conceptu, proportio ipſius
                    <var>.k.</var>
                  ad
                    <var>.h.</var>
                  compoſita erit ex ea quæ ipſius
                    <var>.u.i.</var>
                    <lb/>
                  ad
                    <var>.f.x.</var>
                  & ex ea quæ ipſius
                    <var>.k.</var>
                  ad
                    <var>.h</var>
                  . </s>
                  <s xml:id="echoid-s4534" xml:space="preserve">Cum ergo dempta fuerit proportio ipſius
                    <var>.k.</var>
                  ad
                    <var>.h.</var>
                    <lb/>
                  (vt ſimplex) à proportione ipſius
                    <var>.k.</var>
                  ad
                    <var>.h.</var>
                  (vt compoſita) reliquum nihil erit. </s>
                  <s xml:id="echoid-s4535" xml:space="preserve">Qua-
                    <lb/>
                  re
                    <var>.f.x.</var>
                  æqualis erit ipſi
                    <var>.u.i</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4536" xml:space="preserve">Sed quod
                    <var>.f.m.</var>
                  æqualis ſit ipſi
                    <var>.m.i</var>
                  . </s>
                  <s xml:id="echoid-s4537" xml:space="preserve">Videto in Eutotio, quia hoc ſatis ſui natura
                    <lb/>
                  facile eſt.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4538" xml:space="preserve">Sed accipe alium modum breuiorem ad probandum
                    <var>.f.x.</var>
                  eſſe æqualem ipſi
                    <var>.u.i</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4539" xml:space="preserve">Finge lineam
                    <var>.e.b.g.</var>
                  conting entem in puncto
                    <var>.b.</var>
                  prolungatisq́ue diametris
                    <var>f.
                      <lb/>
                    x.</var>
                  et
                    <var>.u.i.</var>
                  vſque ad contingentem ipſam, habebis
                    <var>.f.e.</var>
                  æqualem ipſi
                    <var>.f.x.</var>
                  et
                    <var>.g.i.</var>
                  ipſi
                    <var>.u.i.</var>
                    <lb/>
                  Ex .35. primi Pergei, producta poſtea
                    <var>.x.u.</var>
                  habeb is ex .2. ſexti Eucli
                    <var>.x.u.</var>
                  parallelam
                    <lb/>
                  ipſi
                    <var>.a.c.</var>
                  ſed
                    <var>.e.g.</var>
                  parallela eſt ipſimet
                    <var>.a.c.</var>
                  ex quinta ſecundi ipſius Pergei, </s>
                  <s xml:id="echoid-s4540" xml:space="preserve">quare ex .30
                    <lb/>
                  primi Euclid
                    <var>.e.g.</var>
                  parallela erit ipſi
                    <var>.u.x.</var>
                  & ex .34. eiuſdem æqualis erit
                    <var>.e.x.</var>
                  ipſi
                    <var>.u.g.</var>
                    <lb/>
                  vnde
                    <var>.f.x.</var>
                  etiam æqualis erit
                    <var>.u.i.</var>
                  ex communi conceptu.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4541" xml:space="preserve">Sed ne quid deſideres probabo
                    <var>.f.m.</var>
                  æqualem eſſe ipſi
                    <var>.m.i</var>
                  . </s>
                  <s xml:id="echoid-s4542" xml:space="preserve">Iam igitur ſcis quod </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>