Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
401 389
402 390
403 391
404 392
405 393
406 394
407 395
408 396
409 397
410 398
411 399
412 400
413 401
414 402
415 403
416 404
417 405
418 406
419 407
420 408
< >
page |< < (383) of 445 > >|
EPISTOLAE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div737" type="section" level="3" n="42">
              <div xml:id="echoid-div737" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4542" xml:space="preserve">
                    <pb o="383" rhead="EPISTOLAE." n="395" file="0395" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0395"/>
                  cum ſit
                    <var>.f.x.</var>
                  æqualis ipſi
                    <var>.u.i.</var>
                  vt tibi probaui, & inuicem parallelæ ideo
                    <var>.f.i.</var>
                  parallela
                    <lb/>
                  erit ipſi
                    <var>.x.u.</var>
                  ex .33. primi Euclidis. </s>
                  <s xml:id="echoid-s4543" xml:space="preserve">Vnde ex .30. eiuſdem, parallela erit etiam ipſi
                    <var>.a.
                      <lb/>
                    c.</var>
                  ſed cum
                    <var>.x.u.</var>
                  diuiſa ſit ab
                    <var>.d.b.</var>
                  per æqualia, eo quod diuidit
                    <var>.a.c.</var>
                  eodem modo, quę
                    <lb/>
                  ipſi parallela eſt ex .2. ſexti. </s>
                  <s xml:id="echoid-s4544" xml:space="preserve">Reliqua tibi conſideranda relinquo. </s>
                  <s xml:id="echoid-s4545" xml:space="preserve">cum verò ambæ
                    <var>.f.
                      <lb/>
                    x.</var>
                  et
                    <var>.u.i.</var>
                  parallelæ ſint ipſi
                    <var>.b.d.</var>
                  ſequitur quod cum ex .34. primi
                    <reg norm="vnaquæque" type="simple">vnaquæq;</reg>
                    <var>.f.m.</var>
                  et
                    <var>.m.
                      <lb/>
                    i.</var>
                  æqualis ſit medietati ipſius
                    <var>.x.u.</var>
                  erunt inuicem æquales.</s>
                </p>
                <figure position="here">
                  <image file="0395-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0395-01"/>
                </figure>
                <p>
                  <s xml:id="echoid-s4546" xml:space="preserve">Minime dubitabam tibi non ſatisfacere Eutocium in .3. propoſitione ſecundi
                    <lb/>
                  lib. de centris Grauium Archimedis, cum citet .6. librum de elementis conicis, ad-
                    <lb/>
                  de quod ſi aliud in ipſo .6. libro ab eo citato non eſſet magis ad propoſitum, quàm
                    <lb/>
                  ca quæ ab ipſo citata ſunt, nihilominus adhuc irreſolutus maneres.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4547" xml:space="preserve">Conſidera igitur eandem ipſam figuram præcedentem; </s>
                  <s xml:id="echoid-s4548" xml:space="preserve">pro alia verò parabola ſi
                    <lb/>
                  mili dictæ, accipe ſecundam figuram ipſius tertiæ dictæ propoſitionis. </s>
                  <s xml:id="echoid-s4549" xml:space="preserve">Deinde ima
                    <lb/>
                  ginabis duo latera
                    <var>.o.x.</var>
                  et
                    <var>.o.p.</var>
                  diuiſa eſſe per æqualia in punct is
                    <var>.g.</var>
                  et
                    <var>.K.</var>
                    <reg norm="protractisque" type="simple">protractisq́;</reg>
                    <lb/>
                  diametris
                    <var>.g.y.</var>
                  et
                    <var>.K.u.</var>
                  quæ, vt in præcedenti probaui, ſunt inuicem æquales, ſcire
                    <lb/>
                  debes quod ſimiles parabolæ inuicem aliæ non poſſunt eſſe, niſi eæ quæ diametros
                    <lb/>
                  proportionales ſuis baſibus habeant,
                    <reg norm="ſimiliterque" type="simple">ſimiliterq́;</reg>
                  poſitæ, hoc eſt, ut proportio ipſius
                    <lb/>
                    <var>b.d.</var>
                  ad
                    <var>.a.c.</var>
                  ſit eadem quæ ipſius
                    <var>.o.r.</var>
                  ad
                    <var>.x.p.</var>
                  & quod anguli ad
                    <var>.r.</var>
                  ſint æquales angulis
                    <lb/>
                  circa
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s4550" xml:space="preserve">Notentur ergo primum puncta communia ip ſius
                    <var>.o.g.</var>
                  cum
                    <var>.y.t.</var>
                  & ipſius
                    <var>.b.</var>
                  x
                    <lb/>
                  cum
                    <var>.f.m.</var>
                  characteribus. ω
                    <unsure/>
                  . et
                    <var>.n</var>
                  . </s>
                  <s xml:id="echoid-s4551" xml:space="preserve">Nunc igitur ſcimus
                    <var>.f.m.</var>
                  æqualem eſſe
                    <var>.m.i.</var>
                  tota
                    <reg norm="mque" type="simple">mq́;</reg>
                    <var>.f.
                      <lb/>
                    i.</var>
                  parallelam eſſe ipſi
                    <var>.a.c</var>
                  . </s>
                  <s xml:id="echoid-s4552" xml:space="preserve">Idem dico de
                    <var>.y.t.u.</var>
                    <reg norm="triangulique" type="simple">trianguliq́;</reg>
                    <var>.x.f.n.</var>
                  et
                    <var>.g.y.</var>
                  ω
                    <unsure/>
                  . eſſe ſimiles
                    <lb/>
                  triangulis
                    <var>.n.m.b.</var>
                  et. ω
                    <unsure/>
                    <var>.t.o.</var>
                  quod ita probatur, nam ex .15. primi Euclid. anguli ad
                    <var>.n.</var>
                    <lb/>
                  ſunt inuicem æquales, ex .29. verò eiuſdem anguli
                    <var>.f.x.n.</var>
                  et
                    <var>.n.b.m.</var>
                  ſimiliter æquales
                    <lb/>
                  ita etiam
                    <var>.n.f.x.</var>
                  et
                    <var>.n.m.b</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4553" xml:space="preserve">Idem dico in ſecunda figura, vnde ex .4. ſexti Eucli. proportio
                    <var>.n.f.</var>
                  ad
                    <var>.m.n.</var>
                  erit ea
                    <lb/>
                  dem quę
                    <var>.f.x.</var>
                  ad
                    <var>.b.m.</var>
                  & ipſius
                    <var>.n.f.</var>
                  ad
                    <var>.x.f.</var>
                  vt
                    <var>.n.m.</var>
                  ad
                    <var>.m.b.</var>
                  ex .16. quinti. </s>
                  <s xml:id="echoid-s4554" xml:space="preserve">Quare ex .11.
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0395-02a" xlink:href="fig-0395-02"/>
                  </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>