Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (28) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div92" type="math:theorem" level="3" n="43">
              <p>
                <s xml:id="echoid-s375" xml:space="preserve">
                  <pb o="28" rhead="IO. BAPT. BENED." n="40" file="0040" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0040"/>
                quadrato dimidij, prout ex ſpeculatione huiuſmodi operis cognoſcetur,
                  <reg norm="cuiæquanda" type="context">cuiæquãda</reg>
                  <lb/>
                eſt
                  <reg norm="differentia" type="context">differẽtia</reg>
                inter
                  <reg norm="ſummam" type="context">ſummã</reg>
                  <reg norm="quadratorum" type="context">quadratorũ</reg>
                  <reg norm="duorum" type="context">duorũ</reg>
                qui
                  <reg norm="quæruntur" type="context">quærũtur</reg>
                  <reg norm="numerorum" type="context">numerorũ</reg>
                , ſimul
                  <reg norm="cum" type="context">cũ</reg>
                pro
                  <lb/>
                ducto
                  <reg norm="eorum" type="context">eorũ</reg>
                radicum. </s>
                <s xml:id="echoid-s376" xml:space="preserve">Dimidium numeri .20. in ſeipſum multiplicandum eſſet, qua-
                  <lb/>
                  <reg norm="dratumque" type="simple">dratumq́;</reg>
                detrahendum ex .208. vtremanerent .108. quorum .108. tertiæ partis qua
                  <lb/>
                drata radix eſſet .6. quæ ſi iuncta fuerit dimidio .20. nempe .10. daretur maior nu-
                  <lb/>
                merus quæſitus .16. quo detracto è .20. darentur .4.</s>
              </p>
              <p>
                <s xml:id="echoid-s377" xml:space="preserve">Cuius ſpeculationis cauſa, datus primus numerus ſignificetur linea
                  <var>.g.h.</var>
                in qua
                  <lb/>
                maior numerus incognitus ſit
                  <var>.g.h.</var>
                minor verò
                  <var>.b.h.</var>
                quorum quadrata ſint
                  <var>.y.t.</var>
                et
                  <var>.
                    <lb/>
                  b.l.</var>
                in quadrato maximo
                  <var>.g.p.</var>
                tum productum
                  <var>.g.b.</var>
                in
                  <var>.b.h.</var>
                ſit
                  <var>.g.c.</var>
                  <reg norm="cogitenturque" type="simple">cogitenturq́;</reg>
                duo
                  <lb/>
                diametri
                  <var>.q.h.</var>
                et
                  <var>.g.p.</var>
                diuiſi per medium in puncto
                  <var>.o.</var>
                per quod duę lineæ ducan-
                  <lb/>
                tur
                  <var>.f.d.</var>
                et
                  <var>.k.m.</var>
                parallelæ lateribus maximi quadrati. </s>
                <s xml:id="echoid-s378" xml:space="preserve">Hæ dictum quadratum in
                  <lb/>
                quatuor quadrata æqualia diuident, quorum
                  <reg norm="vnumquodque" type="simple">vnumquodq́;</reg>
                , æquale erit quadrato
                  <var>.
                    <lb/>
                  g.f.</var>
                dimidij ipſius
                  <var>.g.h.</var>
                datę, </s>
                <s xml:id="echoid-s379" xml:space="preserve">quare eorum
                  <reg norm="vnumquodque" type="simple">vnumquodq́;</reg>
                cognitum erit. </s>
                <s xml:id="echoid-s380" xml:space="preserve">Iterum co
                  <lb/>
                gitemus
                  <var>.s.x.</var>
                per
                  <var>.e.</var>
                  <reg norm="parallelam" type="context">parallelã</reg>
                  <var>.g.k.</var>
                tantum diſtan-
                  <lb/>
                tem à
                  <var>.g.k.</var>
                quantum
                  <var>.y.l.</var>
                ab
                  <var>.g.h.</var>
                diſtare inueni-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0040-01a" xlink:href="fig-0040-01"/>
                tur. </s>
                <s xml:id="echoid-s381" xml:space="preserve">Cogitetur pariter
                  <var>.z.i.a.</var>
                per punctum
                  <var>.i.</var>
                  <lb/>
                parallela
                  <var>.d.p.</var>
                </s>
                <s xml:id="echoid-s382" xml:space="preserve">quare
                  <var>.a.t.</var>
                æqualis erit
                  <var>.f.c.</var>
                et
                  <var>.y.x.</var>
                  <lb/>
                æqualis
                  <var>.f.e.</var>
                et
                  <var>.y.s</var>
                :
                  <var>b.l.</var>
                æqualis. </s>
                <s xml:id="echoid-s383" xml:space="preserve">Ita ſubtractis è
                  <lb/>
                duobus quadratis ſuperius dictis
                  <var>.a.t.y.x.</var>
                et
                  <var>.b.l.</var>
                  <lb/>
                producto
                  <var>.y.b.</var>
                æqualibus, ſupererunt
                  <var>.k.d.</var>
                et
                  <var>.a.c.
                    <lb/>
                  x.</var>
                cognita, tanquam æqualia dato ſecundo nu-
                  <lb/>
                mero, ſed
                  <var>.k.d.</var>
                quadratum eſt medietatis
                  <var>.g.f.</var>
                  <lb/>
                cognitæ, cognoſcetur igitur reſiduum
                  <var>.a.c.x.</var>
                vnà
                  <lb/>
                etiam ſingulæ tertiæ partes nempe quadrata
                  <var>.o.
                    <lb/>
                  i.o.c.</var>
                et
                  <var>.o.e.</var>
                & radix
                  <var>.b.f.</var>
                vel
                  <var>.f.s.</var>
                ſingularum,
                  <lb/>
                qua coniuncta dimidio
                  <var>.g.f.</var>
                  <reg norm="rurfusque" type="simple">rurfusq́;</reg>
                ab
                  <reg norm="eodem" type="context">eodẽ</reg>
                de-
                  <lb/>
                tracta, propoſitum conſequemur.</s>
              </p>
              <div xml:id="echoid-div92" type="float" level="4" n="1">
                <figure xlink:label="fig-0040-01" xlink:href="fig-0040-01a">
                  <image file="0040-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0040-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div94" type="math:theorem" level="3" n="44">
              <head xml:id="echoid-head60" xml:space="preserve">THEOREMA
                <num value="44">XLIIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s384" xml:space="preserve">CVR ſi quis cupiat numerum propoſitum in duas eiuſmodi partes diuidere, vt
                  <lb/>
                quadratum maioris, quadratum minoris ſuperet quantitate alterius numeri
                  <lb/>
                propoſiti, rectè primum numerum in ſeipſum multiplicabit, & ab eodem ſecun-
                  <lb/>
                dum numerum detrahet, reſiduum verò per duplum primi diuidet, ex quo proue-
                  <lb/>
                niens primi pars minor erit, quæ ex illo primo detracta, partem maiorem
                  <lb/>
                proferet.</s>
              </p>
              <p>
                <s xml:id="echoid-s385" xml:space="preserve">Exempli gratia, ſi proponantur .20. diuiſa in duas eiuſmodi partes, vt
                  <reg norm="quadratum" type="context">quadratũ</reg>
                  <lb/>
                maioris ſuperet quadratum minoris numero æquali ipſi .240. oportebit primum
                  <lb/>
                numerum, qui quadratus cum fuerit, erit .400. in ſeipſum multiplicare, & ex hoc
                  <lb/>
                quadrato ſecundum numerum nempe .240. detrahere, </s>
                <s xml:id="echoid-s386" xml:space="preserve">tunc remanebunt .160. quę
                  <lb/>
                diuiſa per .40.
                  <reg norm="numerum" type="context">numerũ</reg>
                  <reg norm="duplum" type="context">duplũ</reg>
                primo, dabuntur quatuor pro minori numero, à reſi-
                  <lb/>
                duo verò .20. detractis quatuor, erunt .16. pro maiorinumero.</s>
              </p>
              <p>
                <s xml:id="echoid-s387" xml:space="preserve">Quod vt exactè conſideremus, primus numerus propoſitus ſignificetur linea
                  <var>.q.
                    <lb/>
                  h.</var>
                diuidendus in duas partes
                  <var>.q.p.</var>
                et
                  <var>.p.h.</var>
                tales quales quærimus. </s>
                <s xml:id="echoid-s388" xml:space="preserve">Poſtmodum eriga
                  <lb/>
                  <gap extent="2"/>
                r quadratum
                  <var>.q.e.</var>
                diuiſum diametro
                  <var>.f.h.</var>
                  <reg norm="ductisque" type="simple">ductisq́;</reg>
                  <var>.p.o.t.</var>
                et
                  <var>.a.o.c.</var>
                parallelis lateri-
                  <lb/>
                bus quadrati, dabuntur imaginaria quadrata
                  <var>.c.t.</var>
                et
                  <var>.p.a.</var>
                duarum partium
                  <var>.q.p.</var>
                et
                  <var>.p.
                    <lb/>
                  h.</var>
                incognitarum. </s>
                <s xml:id="echoid-s389" xml:space="preserve">Ad hæc cogitemus quadratum
                  <var>.u.n.</var>
                æquale quadrato
                  <var>.p.a.</var>
                è quadra­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>