Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
401 389
402 390
403 391
404 392
405 393
406 394
407 395
408 396
409 397
410 398
411 399
412 400
413 401
414 402
415 403
416 404
417 405
418 406
419 407
420 408
421 409
422 410
423 411
424 412
425 413
426 414
427 415
428 416
429 417
430 418
< >
page |< < (395) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div737" type="section" level="3" n="42">
              <div xml:id="echoid-div737" type="letter" level="4" n="1">
                <pb o="395" rhead="EPISTOL AE." n="407" file="0407" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0407"/>
                <p>
                  <s xml:id="echoid-s4685" xml:space="preserve">Habemus igitur
                    <reg norm="nuncomnem" type="context">nuncomnẽ</reg>
                    <unsure/>
                  s illas conditiones quas Archimedes in præcedenti
                    <lb/>
                  propoſitione ſupponit. </s>
                  <s xml:id="echoid-s4686" xml:space="preserve">Vnde ex rationibus ibi allegatis ſequitur
                    <var>.f.r.</var>
                  eſſe duas quin-
                    <lb/>
                  tas ipſius
                    <var>.m.n.</var>
                  hoc eſt ipſius
                    <var>.f.b</var>
                  . </s>
                  <s xml:id="echoid-s4687" xml:space="preserve">Quapropter punctum
                    <var>.r.</var>
                  centrum erit ponderis to-
                    <lb/>
                  tius ſectionis parabolæ ex .8. ſecundi lib. de ponderibus eiuſdem Archimedis.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4688" xml:space="preserve">Inquit nunc Archimedes, quod exiſtente
                    <var>.q.</var>
                  centro ponderis ipſius parabolæ
                    <var>.d.
                      <lb/>
                    b.e.</var>
                  partialis, centrum fruſti erit in linea recta
                    <var>.q.r.f.</var>
                  ita remotum à centro
                    <var>.r.</var>
                  quod
                    <lb/>
                  proportio
                    <var>.q.r.</var>
                  ad partem illam ipſius
                    <var>.r.f.</var>
                  quæ reperitur inter centrum
                    <var>.r.</var>
                  & centrum
                    <lb/>
                  huius fruſti æqualis eſt proportioni totius parabolæ ad partialem. </s>
                  <s xml:id="echoid-s4689" xml:space="preserve">Quod quidem ve
                    <lb/>
                  rum eſt ex .8. primi libri eiuſdem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4690" xml:space="preserve">Inquit etiam punctum
                    <var>.i.</var>
                  illud eſſe, eo quod cum probatum ſit
                    <var>.f.r.</var>
                  duas quintas eſ-
                    <lb/>
                  ſe ipſius
                    <var>.f.b.</var>
                  ideo
                    <var>.b.r.</var>
                  tres quintas erit ipſius
                    <var>.b.f.</var>
                  vt ipſe dicit.</s>
                </p>
                <figure position="here" number="443">
                  <image file="0407-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0407-01"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>