Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
401 389
402 390
403 391
404 392
405 393
406 394
407 395
408 396
409 397
410 398
411 399
412 400
413 401
414 402
415 403
416 404
417 405
418 406
419 407
420 408
421 409
422 410
423 411
424 412
425 413
426 414
427 415
428 416
429 417
430 418
< >
page |< < (396) of 445 > >|
IO, BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div737" type="section" level="3" n="42">
              <div xml:id="echoid-div737" type="letter" level="4" n="1">
                <pb o="396" rhead="IO, BAPT. BENED." n="408" file="0408" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0408"/>
                <p>
                  <s xml:id="echoid-s4691" xml:space="preserve">Sed
                    <var>.q.b.</var>
                  ſimiliter tres quintæ eſt ipſius
                    <var>.d.b.</var>
                  ex .8. prædicta. </s>
                  <s xml:id="echoid-s4692" xml:space="preserve">Quare
                    <var>.q.r.</var>
                  tres quintæ
                    <lb/>
                  erit ipſius
                    <var>.f.g.</var>
                  ex .19. quinti.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4693" xml:space="preserve">Dicamus igitur hoc modo cum
                    <var>.f.b.</var>
                  totum ad totum
                    <var>.b.r.</var>
                  ita ſe habeat vt abſciſ-
                    <lb/>
                  ſum
                    <var>.b.g.</var>
                  ad abſciſſum
                    <var>.q.b.</var>
                  ex .7. et .8. dicti primi libri eiuſdem ideo reſiduum
                    <var>.f.g.</var>
                  ex
                    <lb/>
                    <var>f.b.</var>
                  ad reſiduum
                    <var>.r.q.</var>
                  ex
                    <var>.r.b.</var>
                  erit vt totum
                    <var>.f.b.</var>
                  ad. totum
                    <var>.r.b.</var>
                  ex .19. quinti Eucli.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4694" xml:space="preserve">Sed iam ſub. β. probauimus ita ſe habere fruſtum
                    <var>.a.d.e.c.</var>
                  ad parabolam
                    <var>.d.b.e.</var>
                  vt
                    <lb/>
                    <var>m.t.</var>
                  ad
                    <var>.t.n.</var>
                  ſed vt
                    <var>.m.t.</var>
                  ad
                    <var>.t.n.</var>
                  ita aſſ umpta fuit (vbi
                    <var>.A.</var>
                  ).
                    <var>i.r.</var>
                  ad quam ſic ſe haberet
                    <var>.f.
                      <lb/>
                    h.</var>
                  hoc eſt tres quintæ ipſius
                    <var>.f.g.</var>
                  hoc eſt
                    <var>.q.r</var>
                  . </s>
                  <s xml:id="echoid-s4695" xml:space="preserve">quare ex .11. quinti prop ortio fruſti
                    <var>.a.
                      <lb/>
                    d.e.c.</var>
                  ad parabolam partialem erit vt
                    <var>.q.r.</var>
                  ad
                    <var>.r.i</var>
                  . </s>
                  <s xml:id="echoid-s4696" xml:space="preserve">Exiſtente igitur
                    <var>.r.</var>
                  centro totius pa
                    <lb/>
                  rabolæ et
                    <var>.q.</var>
                  centro partialis, ergo
                    <var>.i.</var>
                  centrum erit fruſti propoſiti.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4697" xml:space="preserve">Sed ſi nullo ſolido intercedente, voluerimus centrum
                    <var>.i.</var>
                  fruſti
                    <var>.a.e.</var>
                  citius inuenire,
                    <lb/>
                  inueniemus primò centrum
                    <var>.r.</var>
                  totius figuræ ex .8. ſecundi eiuſdem conſtituendo
                    <var>.b.r.</var>
                    <lb/>
                  tres quintas totius axis
                    <var>.b.f.</var>
                  & centrum
                    <var>.q.</var>
                  parabolæ
                    <var>.d.b.e.</var>
                  partialis ſimiliter.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4698" xml:space="preserve">Nunc igitur manifeſtum eſt nobis, eandem proportionem fore ipſius
                    <var>.q.r.</var>
                    <lb/>
                  ad
                    <var>.r.i.</var>
                  quæ fruſti
                    <var>.a.e.</var>
                  ad portionem
                    <var>.d.b.e.</var>
                  ex .8. dicta. </s>
                  <s xml:id="echoid-s4699" xml:space="preserve">Vnde ex coniuncta pro-
                    <lb/>
                  portionalitate ita ſe habebit
                    <var>.q.i.</var>
                  ad
                    <var>.i.r.</var>
                  vt
                    <var>.a.b.c.</var>
                  ad
                    <var>.d.b.e.</var>
                  ſed vt
                    <var>.a.b.c.</var>
                  ad
                    <var>.d.b.e.</var>
                  ita ſe
                    <lb/>
                  habet
                    <var>.m.n.</var>
                  ad
                    <var>.n.t.</var>
                  eo quod vnaquæque harum duarum proportionum ſeſquialtera
                    <lb/>
                  eſt proportioni
                    <var>.f.b.</var>
                  ad
                    <var>.b.g.</var>
                  eo. quod
                    <var>.f.b.</var>
                  ad
                    <var>.b.g.</var>
                  ita ſe habet. vt
                    <var>.m.n.</var>
                  ad
                    <var>.o.n.</var>
                  </s>
                  <s xml:id="echoid-s4700" xml:space="preserve">quare
                    <lb/>
                    <var>m.n.</var>
                  ad
                    <var>.t.n.</var>
                  ita ſe habebit vt
                    <var>.g.i.</var>
                  ad
                    <var>.r.i.</var>
                  vnde diſiunctim
                    <var>.m.t.</var>
                  ad
                    <var>.t.n.</var>
                  ita ſe habebit vt
                    <lb/>
                    <var>q.r.</var>
                  ad
                    <var>.r.i</var>
                  . </s>
                  <s xml:id="echoid-s4701" xml:space="preserve">Iungatur igitur
                    <var>.r.i.</var>
                  quæ quidem
                    <var>.r.i.</var>
                  ita ſe habeat ad
                    <var>.r.q.</var>
                  vt
                    <var>.t.n.</var>
                  ad
                    <var>.t.m.</var>
                  vt
                    <lb/>
                  habeatur centrum fruſti.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>