Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (30) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div98" type="math:theorem" level="3" n="46">
              <p>
                <s xml:id="echoid-s396" xml:space="preserve">
                  <pb o="30" rhead="IO. BAPT. BENED." n="42" file="0042" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0042"/>
                rimus, ſi ſumma vnius dictorum prouenientium cum vnitate dat primum numerum,
                  <lb/>
                quid ipſa eadem vnitas dabit? </s>
                <s xml:id="echoid-s397" xml:space="preserve">ex quo propoſitum oriatur.</s>
              </p>
              <p>
                <s xml:id="echoid-s398" xml:space="preserve">Exempli gratia, proponuntur tres numeri, primus .20. ſecundus .34. tertius .8.
                  <lb/>
                Iam quærimus diuidere primum .20. in duas partes quæ mutuò diuiſæ prębeant duo
                  <lb/>
                prouenientia, quorum ſumma tanta ſit vt per eam diuiſo .34. proueniat numerus
                  <lb/>
                æqualis tertio numero .8. </s>
                <s xml:id="echoid-s399" xml:space="preserve">Quod vt præſtemus iubet regula ſecundum .34. per
                  <reg norm="tertium" type="context">tertiũ</reg>
                  <num value="8">.
                    <lb/>
                  8.</num>
                diuidi, vnde proueniet .4. cum vna quarta parte, quod proueniens erit ſumma pro
                  <lb/>
                uenientium ex diuiſione duarum partium quæſitarum, quæ ſi diſtinguere volueri-
                  <lb/>
                mus, præcedentis theorematis methodum ſequemur, vnitate ſuperficiali pro ſecun
                  <lb/>
                do numero propoſito ſumpta, ac ſi diceremus, diuidatur .4. cum vna quarta parte
                  <lb/>
                in duas eiuſmodi partes, vt productum vnius in alteram ſit vnitas ſuperficialis, cer-
                  <lb/>
                tè fractis integris cum quarta parte coniungendis, darentur vnitatis decemſeptem
                  <lb/>
                quartæ lineares, verum cum neceſſe ſit, ex præcedenti theoremate, dimidium in
                  <lb/>
                ſeipſum multiplicare,
                  <reg norm="eſſetque" type="simple">eſſetq́;</reg>
                dimidium .8. quartarum partium cum octaua, com-
                  <lb/>
                modius totum conſtituetur .34. octauarum, quarum dimidium, nempe decemſep-
                  <lb/>
                tem octauæ, in ſeipſum multiplicatum erunt .289. ſexageſimæ quartæ vnius integri
                  <lb/>
                ſuperficialis, quandoquidem
                  <reg norm="integrum" type="context">integrũ</reg>
                ſuperficiale, cuius vnitas linearis in .8. partes
                  <lb/>
                diuiditur eſt .64. vt ex primo theoremate huius libri depræhendi poteſt. </s>
                <s xml:id="echoid-s400" xml:space="preserve">Nunc vni-
                  <lb/>
                tate hac ſuperficiali, nempe .64. ex .289. detracta, ſupererit .225. cuius radix qua-
                  <lb/>
                drata, ſcilicet .15. coniuncta dimidio dictorum prouenientium, nempe .17. dabit
                  <lb/>
                maius proueniens .32.
                  <reg norm="detractaque" type="simple">detractaq́;</reg>
                ex altero dimidio, dabit proueniens minus .2. hoc
                  <lb/>
                eſt pro maiore proueniente .32. octauas, & pro minore duas, quatuor ſcilicet inte-
                  <lb/>
                gros pro maiore, & quartam partem vnius integri pro minore. </s>
                <s xml:id="echoid-s401" xml:space="preserve">Nunc ſi ex regula
                  <lb/>
                de tribus dixerimus, ſi .4. iuncta vni, nempe .5. dant .20. primum numerum, quid
                  <lb/>
                dabunt .4. integra (proueniens inquam maius)
                  <reg norm="dabunt" type="context">dabũt</reg>
                certè .16. partem maiorem.
                  <lb/>
                </s>
                <s xml:id="echoid-s402" xml:space="preserve">Tum ſi dixerimus, ſi quarta pars coniuncta vnitati dat .20: </s>
                <s xml:id="echoid-s403" xml:space="preserve">quid dabit quarta illa
                  <lb/>
                pars (hoc eſt proueniens minus) dabit
                  <reg norm="profectò" type="simple">ꝓfectò</reg>
                quatuor ſcilicet
                  <reg norm="minorem" type="context">minorẽ</reg>
                partem, quod
                  <lb/>
                ab antiquis certè ignoratum fuit, qui, inuentis prouenientibus quieuerunt, ne-
                  <lb/>
                ſcientes ijs vti ad inueniendas duas primi numeri partes.</s>
              </p>
              <p>
                <s xml:id="echoid-s404" xml:space="preserve">Cuius ſpeculationis gratia, demus primum numerum ſignificari linea
                  <var>.e.u.</var>
                cuius
                  <lb/>
                partes
                  <var>.e.a.</var>
                &
                  <var>a.u.</var>
                ſint quæ quæruntur, alter verò numerus ſignificetur linea
                  <var>.b.
                    <lb/>
                  d.</var>
                tertius linea
                  <var>.g.f.</var>
                proueniens
                  <reg norm="autem" type="wordlist">aũt</reg>
                diuiſionis
                  <var>.e.a.</var>
                per
                  <var>.a.u.</var>
                ſit
                  <var>.n.t.</var>
                diuiſionis
                  <reg norm="autem" type="wordlist">aũt</reg>
                  <var>.a.u.</var>
                  <lb/>
                per
                  <var>.a.e.</var>
                ſit
                  <var>.t.o.</var>
                ſumma erit
                  <var>.n.t.o.</var>
                vnitas verò
                  <var>.n.i.</var>
                et
                  <var>.o.i</var>
                . </s>
                <s xml:id="echoid-s405" xml:space="preserve">Iam ſi numerus
                  <var>.f.g.</var>
                tertiò
                  <lb/>
                propoſitus ex diuiſione ſecundi per
                  <var>.o.t.n.</var>
                proferri debet. </s>
                <s xml:id="echoid-s406" xml:space="preserve">Ex .13. theoremate patet,
                  <lb/>
                quòd ſi
                  <var>.b.d.</var>
                per
                  <var>.g.f.</var>
                diuiſerimus, proferetur
                  <var>.o.t.n.</var>
                qui cum fuerit inuentus,
                  <reg norm="ſummam" type="context">ſummã</reg>
                  <lb/>
                eſſe oportet
                  <reg norm="duorum" type="context">duorũ</reg>
                  <reg norm="prouenientium" type="context">prouenientiũ</reg>
                , ex diuiſione mutua
                  <reg norm="duorum" type="context">duorũ</reg>
                numerorum, nempe
                  <var>.
                    <lb/>
                  a.e.</var>
                per
                  <var>.a.u.</var>
                et
                  <var>.a.u.</var>
                per
                  <var>.a.e.</var>
                deinde manifeſtum eſt ex .24. aut .25. theoremate
                  <reg norm="eorum" type="context">eorũ</reg>
                  <lb/>
                productum (multiplicatis prouenientibus adinuicem) vnitatem ſuperficialem futu
                  <lb/>
                ram eſſe. </s>
                <s xml:id="echoid-s407" xml:space="preserve">Hactenus igitur, totum
                  <var>.o.n.</var>
                ex doctrina præcedentis theorematis diui-
                  <lb/>
                ditur in puncto
                  <var>.t.</var>
                ita vt productum
                  <var>.o.t.</var>
                in
                  <var>.t.n.</var>
                  <lb/>
                ſolam vnitatem ſuperficialem
                  <reg norm="contineat" type="context">cõtineat</reg>
                , quo
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0042-01a" xlink:href="fig-0042-01"/>
                facto, ſi, vt antedictum eſt, cogitauerimus
                  <var>.n.
                    <lb/>
                  t.</var>
                  <reg norm="proueniens" type="context">proueniẽs</reg>
                eſſe ex diuiſione
                  <var>.e.a.</var>
                per
                  <var>.a.u.</var>
                et
                  <var>.
                    <lb/>
                  t.o.</var>
                proueniens ex diuiſione
                  <var>.a.u.</var>
                per
                  <var>.a.e.</var>
                pa-
                  <lb/>
                tebit ex definitione diuiſionis, quod eadem
                  <lb/>
                erit proportio
                  <var>.a.e.</var>
                ad
                  <var>.n.t.</var>
                quæ eſt
                  <var>.a.u.</var>
                ad vni-
                  <lb/>
                tatem
                  <var>.n.i.</var>
                et
                  <var>.a.u.</var>
                ad
                  <var>.o.t.</var>
                eadem quæ eſt
                  <var>.e.a.</var>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>