Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
311 299
312 300
313 301
314 302
315 303
316 304
317 305
318 306
319 307
320 308
321 309
322 310
323 311
324 312
325 313
326 314
327 315
328 316
329 317
330 318
331 319
332 320
333 321
334 322
335 323
336 324
337 325
338 326
339 327
340 328
< >
page |< < (421) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div776" type="section" level="3" n="50">
              <div xml:id="echoid-div778" type="letter" level="4" n="3">
                <p>
                  <s xml:id="echoid-s5097" xml:space="preserve">
                    <pb o="421" rhead="EPISTOL AE." n="433" file="0433" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0433"/>
                  tum, ſi dempſeris ex quadrato ipſius .100000. ſemidiametro ſphęræ, </s>
                  <s xml:id="echoid-s5098" xml:space="preserve">tuncradix qua-
                    <lb/>
                  drata reſidui, erit perpendicularis à centro ſphæræ ad centrum pentagoni partium,
                    <lb/>
                  79461. cuius tertia pars, ſi multiplicata fuerit cum pentagono ſupra reperto dicti cor
                    <lb/>
                  poris producet vnam ex .12. pyramidibus componentibus dictum Duodecaedron,
                    <lb/>
                  quæ pyramis, demum, multiplicata per .12. dabit totam corpulentiam ipſius Duo
                    <lb/>
                  decaedri partium .2785354925791680.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5099" xml:space="preserve">Nunc verò ſi experiri voluerimus vtrum iſti calculi duorum corporum maiorum
                    <lb/>
                  ſint rectè ſupputati,
                    <reg norm="dicemus" type="simple">dicemꝰ</reg>
                  ſi ad
                    <reg norm="corpus" type="simple">corpꝰ</reg>
                  .12.
                    <reg norm="baſium" type="context">baſiũ</reg>
                  ,
                    <reg norm="quod" type="wordlist">qđ</reg>
                  eſt
                    <reg norm="partium" type="context">partiũ</reg>
                  .2785354925791680
                    <lb/>
                  conuenit numerus partium .2536010579470260. ipſius Icoſaedri, quid conueniet
                    <lb/>
                  lateri cubi partium .115476. & inueniemus conuenire latus ipſius Icoſaedri partium
                    <lb/>
                  105138. eo quod probatum ſit in
                    <ref id="ref-0026">.10. propoſitione .14. li. Eucl.</ref>
                  eandem
                    <reg norm="proportionem" type="context">proportionẽ</reg>
                    <lb/>
                  eſſe corpulentiæ ipſius Duodecaedri ad corpulentiam ipſius Icoſaedri, quæ lateris
                    <lb/>
                  cubi ad latus Icoſaedri.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5100" xml:space="preserve">Hæc autem corpora, ita ſibi inuicem, & cum eorum ſphæra harmonicè
                    <reg norm="conueniunt" type="context">conueniũt</reg>
                    <lb/>
                  quemadmodum antiqui philoſophi inuenerunt, vt
                    <reg norm="mirandum" type="context">mirandũ</reg>
                  non ſit, ipſos credidiſ-
                    <lb/>
                  ſe omnia quæ natura conſtant, aliquo pacto exiſtis corporibus fieri. </s>
                  <s xml:id="echoid-s5101" xml:space="preserve">Conſidera quæ-
                    <lb/>
                  ſo quomodo conueniant inuicem Tetraedron, Octaedron, & Icoſaedron, cum uniuſ-
                    <lb/>
                  cuiuſque baſes ſint triangulares æquilateræ intelli gendo ſemper hæc corpora ab ea-
                    <lb/>
                  dem ſphæra circunſcriptibilia.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5102" xml:space="preserve">Octaedron, cum Tetraedro etiam in hoc conuenit, quod latus Octaedri æquale
                    <lb/>
                  ſit ei perpendiculari, quæ diuidit baſim Tetraedri per æqualia, vtſupra demonſtra-
                    <lb/>
                  uimus.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5103" xml:space="preserve">Harmonicis etiam interua llis hæc duo corpora inuicem concordantur, cum baſis
                    <lb/>
                  Tetraedri ad baſim Octaedri ſeruet proportionem ſeſquitertiam, conſonantiæ dia-
                    <lb/>
                  teſſaron. </s>
                  <s xml:id="echoid-s5104" xml:space="preserve">Et proportio omnium ſuperficierum ſiue baſium Octaedri ſimul ſumpta-
                    <lb/>
                  rum, ad omnes baſes ipſius Tetraedri ſimul ſumptas ſit ſeſquialtera, conſonantiæ dia
                    <lb/>
                  pentis. </s>
                  <s xml:id="echoid-s5105" xml:space="preserve">Neque omittendum eſt, quod proportio Octaedriad triplum Tetraedri ſit,
                    <lb/>
                  vt latus Octaedri ad latus Tetraedri.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5106" xml:space="preserve">Proportio verò lateris Octaedri, ad axem Tetraedri, potentia eſt ſeſquioctaua,
                    <lb/>
                  vt ſupra vidimus interuallum ſcilicet harmonicum toni maioris.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5107" xml:space="preserve">Harmonia verò Tetraedri, & Exaedri
                    <reg norm="cum" type="context">cũ</reg>
                  eorum ſphæra, talis eſt, vt proportio dia
                    <lb/>
                  metriſphæræ, potentia, tripla ſit lateri Exaedri, & ſeſquialtera lateri Tetraedri, ex
                    <lb/>
                  quo ſequitur latus Tetraedri potentia duplum exiſtere lateri Exaedri. </s>
                  <s xml:id="echoid-s5108" xml:space="preserve">Interuallum
                    <lb/>
                  enim triplum in harmonicis, componitur ex diapaſon, & diapente, & ſonat ſpeciem
                    <lb/>
                  diapentis. </s>
                  <s xml:id="echoid-s5109" xml:space="preserve">Duplum verò eſt diapaſon, ſeſquialterum autem eſt di apente, quę con-
                    <lb/>
                  ſonantiæ perfectiſſimæ ſunt.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5110" xml:space="preserve">Proportio verò diametri ſphæræ, potentia dupla eſt lat eri Octaedri, conſonantię
                    <lb/>
                  diapaſon. </s>
                  <s xml:id="echoid-s5111" xml:space="preserve">Ex quo ſequitur proportionem lateris Tetraedri ad latus Octaedri, po-
                    <lb/>
                  tentia, ſeſquitertiam eſſe, hoc eſt conſonantiæ diateſſaron, & proportionem lateris
                    <lb/>
                  Octaedri ad latus Exaedri, potentia, ſeſquialteram eſſe, ita quod quatuor iſtæ poten
                    <lb/>
                  tiæ, ideſt diametri ſphæræ, lateris Tetraedri, lateris Octaedri, & lateris Exaedri con-
                    <lb/>
                  ſtituunt harmoniam ferè perfectiſſimam, ijs terminis comprehenſam .6. 4. 3. 2. (dixi
                    <lb/>
                  ferè, quia ditonus ſupra terminum .3. vel ſemiditonus ſub termino .2. hoc loco non
                    <lb/>
                  reperitur, cuius quidem terminus eſſet .2. cum duabus quintis.)</s>
                </p>
                <p>
                  <s xml:id="echoid-s5112" xml:space="preserve">Adde quod diameter ſphæræ triplus eſt longitudine ad
                    <reg norm="perpendicularem" type="context">perpendicularẽ</reg>
                  ductam
                    <lb/>
                  à centro ſphæræ ad baſim Octaedri, quæ proportio, vt ſupra dictum eſt, dicitur dia-
                    <lb/>
                  paſondiapente, practici verò eam vocant duodecimam.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>