Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
< >
page |< < (422) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div776" type="section" level="3" n="50">
              <div xml:id="echoid-div778" type="letter" level="4" n="3">
                <pb o="422" rhead="IO. BAPT. BENED." n="434" file="0434" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0434"/>
                <p>
                  <s xml:id="echoid-s5113" xml:space="preserve">Diameter verò ſphæræ ſeſquialter eſt longitudine axi Tetraedri, conſonantiæ
                    <lb/>
                  diapentis. </s>
                  <s xml:id="echoid-s5114" xml:space="preserve">Axis autem Tetraedri ſeſquitertius eſt longitudinis ſemidiametro ſphæ-
                    <lb/>
                  ræ conſonantiæ diateſſaron. </s>
                  <s xml:id="echoid-s5115" xml:space="preserve">Ita quod iſti tres termini, qui ſunt, diameter ſphæræ,
                    <lb/>
                  axis Tetraedri, & ſemidiameter ſphæræ conſtituunt etiam valde perfectam harmo-
                    <lb/>
                  niam huiuſmodi numeris contentam .6. 4. 3. corpulentia verò Exaedri ad corpu-
                    <lb/>
                  lentiam Tetraedri tripla eſt, conſonantiæ iam ſupradictæ diapaſondiapente. </s>
                  <s xml:id="echoid-s5116" xml:space="preserve">Si ve-
                    <lb/>
                  rò de vniſono aliquid videre deſideras, conſidera æqualitatem dupli quadrati dia-
                    <lb/>
                  metri ipſius ſphæræ, cum omnibus baſibus Exaedri, vel potentia diametri ſphæræ
                    <lb/>
                  cum duabus potentijs ſimul ſumptis, quarum vna eſt lateris Tetraedri, reliqua verò
                    <lb/>
                  lateris Exaedri, vel æqualitatem numerorum laterum Tetraedri, cum baſibus Exae
                    <lb/>
                  dri. </s>
                  <s xml:id="echoid-s5117" xml:space="preserve">Nec mihi videtur ſilentio inuoluendum eſſe, antequam vlterius progrediar no­
                    <lb/>
                  tabilem ſympatiam inter triangulum æquilaterum, & Tetraedron (
                    <reg norm="quanuis" type="context">quãuis</reg>
                    <reg norm="triangulum" type="context">triangulũ</reg>
                    <lb/>
                  corpus non ſit) non ſolum ob
                    <reg norm="inalterabilitatem" type="context">inalterabilitatẽ</reg>
                  harum duarum figurarum. </s>
                  <s xml:id="echoid-s5118" xml:space="preserve">(nam omnes
                    <lb/>
                  aliæ alterabiles eſſe poſſunt, ijſdem lateribns exiſtentibus, cum ex quadrato rom-
                    <lb/>
                  bus, vel ex pentagono ęquiangulo, pentagonum non æquiangulum & c. efficiatur)
                    <lb/>
                  </s>
                  <s xml:id="echoid-s5119" xml:space="preserve">ſed quod quemadmodum latus trianguli æquilateri ſeſquitertium potentia eſt per-
                    <lb/>
                  pendiculari ipſum per æqualia diuidenti, ita latus Tetraedri, ſeſquialterum eſt po-
                    <lb/>
                  tentia axi ipſius Tetraedri, vnde cum dempta fuerit illa proportio ſeſquitertia, ex
                    <lb/>
                  hac ſeſquialtera relinquetur nobis proportio ſeſquioctaua, inter perpendicularem
                    <lb/>
                  trianguli, & axem Tetraedri (quod etiam ſupra demonſtrauimus.) </s>
                  <s xml:id="echoid-s5120" xml:space="preserve">Tranſeamus nunc
                    <lb/>
                  hęc, nec omittamus tamen ſympatias quaſdam inter Exaedron, Octaedron, & Tetra
                    <lb/>
                  edron, hoc eſt quod eadem proportio ſit inter corpulentias Exaedri, & Octaedri,
                    <lb/>
                  quæinter eorum ſuperficies, nec non, vt latus Exaedri ad ſemidiametrum ſphæræ.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s5121" xml:space="preserve">Proportio verò baſis Exaedri ad baſim Tetraedri, vtlatus Tetraedri ad perpendicu
                    <lb/>
                  larem diuidentem per æqualia eius baſim.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5122" xml:space="preserve">Hactenus ſatis dictum ſit de Tetraedro, Exaedro, & Octaedro cum ſphæra. </s>
                  <s xml:id="echoid-s5123" xml:space="preserve">
                    <reg norm="Dicem" type="context">Dicẽ</reg>
                    <lb/>
                  dum nunc cenſeo aliquid de reliquis duobus mirabilibus corporibus, quamuis ferè
                    <lb/>
                  omnia hæc ab antiquis philoſophis inuenta ſint, quorum primum eſt, quod tam ba-
                    <lb/>
                  ſis Duodecaedri, quam Icoſaedri, ab vno
                    <reg norm="eodemque" type="simple">eodemq́;</reg>
                  circulo circunſcriptibiles ſunt, ve
                    <lb/>
                  rùm, talis paſſio accidit etiam baſibus Exaedri & Octaedri. </s>
                  <s xml:id="echoid-s5124" xml:space="preserve">Præterea quemadmo-
                    <lb/>
                  dum in Duodecaedro, quilibet angulus ſolidus terminatur tribus angulis pentago-
                    <lb/>
                  norum æquiangulorum ita in Icoſaedro, quilibet angulus ſolidus viceuerſa termi-
                    <lb/>
                  natur quinque angulis triangulorum æquiangulorum. </s>
                  <s xml:id="echoid-s5125" xml:space="preserve">Et tam vnum, quam alte-
                    <lb/>
                  rum horum corporum, triginta lateribus continetur. </s>
                  <s xml:id="echoid-s5126" xml:space="preserve">Et tot ſolidos angulos trian-
                    <lb/>
                  gulares, habet Duodecaedron, quot baſes triangulares continet Icoſaedron.</s>
                </p>
                <p>
                  <s xml:id="echoid-s5127" xml:space="preserve">Et Icoſaedron, tot ſolidos angulos
                    <reg norm="pentagonos" type="context">pẽtagonos</reg>
                  , quot baſes
                    <reg norm="pentagonas" type="context">pẽtagonas</reg>
                  habet Duo
                    <lb/>
                  decaedron. </s>
                  <s xml:id="echoid-s5128" xml:space="preserve">Et tam vnum quam alterum habet .60. angulos ſuperficiales. </s>
                  <s xml:id="echoid-s5129" xml:space="preserve">
                    <reg norm="Eademque" type="context simple">Eadẽq́;</reg>
                    <lb/>
                  proportio eſt omnium baſium ſimul
                    <reg norm="ſumptarum" type="context">ſumptarũ</reg>
                  Duodecaedri ad omnes baſes ſimul
                    <lb/>
                  ſumptas ipſius Icoſaedri, quæ corpulentiæ ipſius Duodecaedri ad corpulentiam
                    <lb/>
                  Icoſaedri (quamuis hęc paſſio accidat Exaedro cum Octaedro, vt ſpra diximus) quę
                    <lb/>
                  quidem proportio, eadem etiam eſt, quę lateris Exaedri ad latus Icoſaedri, vt ſu-
                    <lb/>
                  pra iam dictum fuit.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>