Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
< >
page |< < (32) of 445 > >|
I.O. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div102" type="math:theorem" level="3" n="48">
              <p>
                <s xml:id="echoid-s425" xml:space="preserve">
                  <pb o="32" rhead="I.O. BAPT. BENED." n="44" file="0044" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0044"/>
                licet quanta ſumma eſt maioris cum proueniente.</s>
              </p>
              <p>
                <s xml:id="echoid-s426" xml:space="preserve">Cuius ſpeculationis cauſa, maior numerus ſignificetur
                  <var>.a.i.</var>
                et minor linea
                  <var>.a.o.</var>
                ex
                  <lb/>
                quo ex præſupoſito
                  <var>.o.i.</var>
                vnitas erit. </s>
                <s xml:id="echoid-s427" xml:space="preserve">Sit autem proueniens ex diuiſione
                  <var>.a.i.</var>
                per
                  <var>.a.o.
                    <lb/>
                  a.e</var>
                : </s>
                <s xml:id="echoid-s428" xml:space="preserve">quod
                  <var>.e.a.</var>
                directè coniungatur ipſi
                  <var>.a.i.</var>
                et productum
                  <var>.a.i.</var>
                in
                  <var>.a.e.</var>
                ſit
                  <var>.u.i</var>
                . </s>
                <s xml:id="echoid-s429" xml:space="preserve">Probabo
                  <lb/>
                numerum ſuperficialem
                  <var>.u.i.</var>
                æqualem eſſe lineari
                  <var>.i.a.e</var>
                . </s>
                <s xml:id="echoid-s430" xml:space="preserve">quare meminiſſe oportet,
                  <lb/>
                decimotertio theoremate probatum fuiſſe, quod ſi numerus diuiſibilis per pro-
                  <lb/>
                ueniens diuidatur, proueniens futurus ſit numerus diuidens, </s>
                <s xml:id="echoid-s431" xml:space="preserve">quare
                  <var>.a.o.</var>
                erit pro-
                  <lb/>
                ueniens ex diuiſione
                  <var>.a.i.</var>
                per
                  <var>.a.e.</var>
                & ex deſinitione diuiſionis ita ſe habebit
                  <var>.e.a.</var>
                ad
                  <var>.
                    <lb/>
                  a.i.</var>
                ſicut
                  <var>.o.i.</var>
                ad
                  <var>.o.a.</var>
                & componondo ita
                  <var>.e.i.</var>
                ad
                  <var>.a.i.</var>
                ſicut
                  <var>.i.a.</var>
                ad
                  <var>.o.a.</var>
                </s>
                <s xml:id="echoid-s432" xml:space="preserve">quare
                  <var>.a.i.</var>
                erit me-
                  <lb/>
                dia pportionalis inter
                  <var>.e.i.</var>
                et
                  <var>.a.o.</var>
                ſed
                  <var>.a.i.</var>
                non modò diuiſa
                  <reg norm="nunc" type="context">nũc</reg>
                cogitatur ab
                  <var>.e.a.</var>
                ex
                  <lb/>
                quo ſit proueniens
                  <var>.a.o.</var>
                ſed etiam per eandem
                  <var>.e.a.</var>
                multiplicata, ex quo produ-
                  <lb/>
                ctum oriatur
                  <var>.u.i</var>
                . </s>
                <s xml:id="echoid-s433" xml:space="preserve">
                  <reg norm="Itaque" type="simple">Itaq;</reg>
                ex .25. theobema-
                  <lb/>
                te
                  <var>.a.i.</var>
                media eſt proportionalis inter
                  <var>.u.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0044-01a" xlink:href="fig-0044-01"/>
                i. et
                  <var>.a.o</var>
                . </s>
                <s xml:id="echoid-s434" xml:space="preserve">Quare. ex .11. quinti. eadem erit
                  <lb/>
                proportio
                  <var>.u.i.</var>
                ad
                  <var>.a.i.</var>
                ſicut
                  <var>.e.i.</var>
                ad eandem
                  <var>.
                    <lb/>
                  a.i</var>
                . </s>
                <s xml:id="echoid-s435" xml:space="preserve">Igitur ex .9. prædicti numerus
                  <var>.u.i.</var>
                  <lb/>
                æqualis erit numero
                  <var>.e.i.</var>
                quod erat propoſitum.</s>
              </p>
              <div xml:id="echoid-div102" type="float" level="4" n="1">
                <figure xlink:label="fig-0044-01" xlink:href="fig-0044-01a">
                  <image file="0044-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0044-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div104" type="math:theorem" level="3" n="49">
              <head xml:id="echoid-head65" xml:space="preserve">THEOREMA
                <num value="49">XLIX</num>
              .</head>
              <p>
                <s xml:id="echoid-s436" xml:space="preserve">IDipſtim etiam alia ratione conſiderari poteſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s437" xml:space="preserve">Linea
                  <var>.u.a.</var>
                ſecetur in puncto
                  <var>.t.</var>
                ita vt
                  <var>.a.t.</var>
                æqualis ſit vnitati
                  <var>.o.i.</var>
                & media paral
                  <lb/>
                lela
                  <var>.t.n.</var>
                terminetur productum
                  <var>.t.i.</var>
                quod conſtabit æquali numero, quamuis ſuperfi-
                  <lb/>
                ciali, numero
                  <var>.a.i.</var>
                tametſi lineari. </s>
                <s xml:id="echoid-s438" xml:space="preserve">Tumparallela ducatur à puncto
                  <var>.o.</var>
                ipſi
                  <var>.a.u.</var>
                termi
                  <lb/>
                  <reg norm="neturque" type="simple">neturq́;</reg>
                productum
                  <var>.o.u.</var>
                ex quo bina producta dabuntur
                  <var>.u.o.</var>
                et
                  <var>.t.i.</var>
                inter ſe æqualia
                  <lb/>
                ex .15. ſexti aut .20. ſeptimi cum ita ſe habeat
                  <var>.a.i.</var>
                ad
                  <var>.a.u.</var>
                ſicut
                  <var>.a.o.</var>
                ad
                  <var>.a.t.</var>
                ſed
                  <var>.a.i.</var>
                ad
                  <var>.
                    <lb/>
                  a.o.</var>
                permutando ſic ſe habet ſicut
                  <var>.a.u.</var>
                ad
                  <var>.a.t.</var>
                & ex prima ſexti aut .18. vel .19. ſepti-
                  <lb/>
                mi ſic ſe habet
                  <var>.u.i.</var>
                ad
                  <var>.u.o.</var>
                ſicut
                  <var>.a.i.</var>
                ad
                  <var>.a.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0044-02a" xlink:href="fig-0044-02"/>
                o. hoc eſt
                  <var>.u.i.</var>
                ad
                  <var>.t.i.</var>
                ope .11. quinti. </s>
                <s xml:id="echoid-s439" xml:space="preserve">Iam
                  <lb/>
                ex definitione diuiſionis ita ſe habet
                  <var>.a.e.</var>
                  <lb/>
                ad
                  <var>.a.i.</var>
                ſicut
                  <var>.o.i.</var>
                ad
                  <var>.o.a.</var>
                & componendo
                  <var>.
                    <lb/>
                  e.i.</var>
                ad
                  <var>.a.i.</var>
                ſicut
                  <var>.i.a.</var>
                ad
                  <var>.o.a</var>
                . </s>
                <s xml:id="echoid-s440" xml:space="preserve">Itaque ex præ-
                  <lb/>
                dicta .11. ſic ſe habebit
                  <var>.e.i.</var>
                ad
                  <var>.i.a.</var>
                ſicut
                  <var>.u.
                    <lb/>
                  i.</var>
                ad
                  <var>.t.i.</var>
                ſed
                  <var>.t.i.</var>
                numero conſtat æquali
                  <var>.a.
                    <lb/>
                  i</var>
                . </s>
                <s xml:id="echoid-s441" xml:space="preserve">quare ex .9. quinti numerus
                  <var>.u.i.</var>
                numero
                  <var>.e.i.</var>
                æqualis erit.</s>
              </p>
              <div xml:id="echoid-div104" type="float" level="4" n="1">
                <figure xlink:label="fig-0044-02" xlink:href="fig-0044-02a">
                  <image file="0044-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0044-02"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div106" type="math:theorem" level="3" n="50">
              <head xml:id="echoid-head66" xml:space="preserve">THEOREMA
                <num value="50">L</num>
              .</head>
              <p>
                <s xml:id="echoid-s442" xml:space="preserve">CVR diuidentes numerum propoſitum in duas eiuſmodi partes, vt
                  <reg norm="productum" type="context">productũ</reg>
                  <lb/>
                vnius in alteram cum i pſarum differentia in ſummam collectum, æquale ſit
                  <lb/>
                alicui alteri numero maiori primo. </s>
                <s xml:id="echoid-s443" xml:space="preserve">Rectè primum ex ſecundo detrahunt, reſiduum
                  <lb/>
                verò conſeruant, tum ex primo ſemper binarium deſumunt,
                  <reg norm="dimidiumque" type="simple">dimidiumq́;</reg>
                conſer-
                  <lb/>
                uant, alterum verò dimidium in ſeipſo multiplicant, & ex quadrato numerum con
                  <lb/>
                ſeruatum eruunt,
                  <reg norm="reſiduique" type="simple">reſiduiq́;</reg>
                radicem ex dimidio conſeruato, quod vltimum reſi-
                  <lb/>
                duum propoſiti numeri quæſita pars minor eſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s444" xml:space="preserve">Exempli gratia, ſi proponatur numerus .20. ita
                  <reg norm="diuidendus" type="context">diuidẽdus</reg>
                , vt
                  <reg norm="productum" type="context">productũ</reg>
                vnius partis
                  <lb/>
                in alteram, cum partium differentia collectum in ſummam, æquale ſit propoſito </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>