Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (38) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div120" type="math:theorem" level="3" n="59">
              <pb o="38" rhead="IO. BAPT. BENED." n="50" file="0050" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0050"/>
              <p>
                <s xml:id="echoid-s521" xml:space="preserve">Hoc vt demonſtremus, primus nu-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0050-01a" xlink:href="fig-0050-01"/>
                merus linea
                  <var>.a.b.</var>
                ſignificetur, quam di-
                  <lb/>
                uiſam cogitemus in puncto
                  <var>.c.</var>
                in partes
                  <lb/>
                quæſitas, ex quo præſupponitur duas li-
                  <lb/>
                neas
                  <var>.a.c.</var>
                et
                  <var>.c.b.</var>
                duo quadrata eſſe, quæ
                  <lb/>
                in altera figura ſignificetur per
                  <var>.d.</var>
                et
                  <var>.e.</var>
                  <lb/>
                productum autem radicum cognitum
                  <var>.
                    <lb/>
                  f.</var>
                quandoquidem datum eſt, cuius qua-
                  <lb/>
                dratum æquale erit producto quadra-
                  <lb/>
                torum
                  <var>.d.e.</var>
                adinuicem, nempe
                  <var>.b.c.</var>
                in
                  <var>.a.c.</var>
                ex .19. theoremate huius. </s>
                <s xml:id="echoid-s522" xml:space="preserve">Quod verbi
                  <lb/>
                gratia ſit
                  <var>.x.</var>
                  <reg norm="itaque" type="simple">itaq;</reg>
                cognitum, quo facto, doctrinam .45. theorematis libri huius ſecuti,
                  <lb/>
                propoſitum conſequemur.</s>
              </p>
              <div xml:id="echoid-div120" type="float" level="4" n="1">
                <figure xlink:label="fig-0050-01" xlink:href="fig-0050-01a">
                  <image file="0050-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0050-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div122" type="math:theorem" level="3" n="60">
              <head xml:id="echoid-head76" xml:space="preserve">THEOREMA
                <num value="60">LX</num>
              .</head>
              <p>
                <s xml:id="echoid-s523" xml:space="preserve">CVR productum differentiæ duarum radicum in ſummam ipſarum, ſemper
                  <lb/>
                differentia ſit quadratorum ipſarum radicum.</s>
              </p>
              <p>
                <s xml:id="echoid-s524" xml:space="preserve">
                  <reg norm="Exempli" type="context">Exẽpli</reg>
                gratia, quoslibet duos numeros pro radicibus ſumpſerimus, vt potè .3. et
                  <num value="5">.
                    <lb/>
                  5.</num>
                quorum differentia eſt .2. certè ſi differentiam hanc per ſummam radicum ſcili-
                  <lb/>
                cet .8. multiplicauerimus, dabitur numerus .16. quod productum differentia eſt
                  <lb/>
                ſuorum quadratorum, nempeinter .9. et .25.</s>
              </p>
              <p>
                <s xml:id="echoid-s525" xml:space="preserve">Hoc vt ſpeculemur, duæ radices in linea
                  <var>.n.i.</var>
                ſignificentur, quarum vna ſit
                  <var>.n.c.</var>
                &
                  <lb/>
                altera
                  <var>.c.i.</var>
                ipſarum autem differentia
                  <var>.n.t.</var>
                ex quo
                  <var>.t.
                    <lb/>
                  c.</var>
                æqualis erit
                  <var>.c.i</var>
                . </s>
                <s xml:id="echoid-s526" xml:space="preserve">Tum cogitato toto quadrato
                  <var>.d.i.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0050-02a" xlink:href="fig-0050-02"/>
                cum diametro
                  <var>.d.i.</var>
                  <reg norm="ductaque" type="simple">ductaq́</reg>
                parallela lateri
                  <var>.n.d.</var>
                à
                  <lb/>
                puncto
                  <var>.c.</var>
                & altera à puncto
                  <var>.t.</var>
                & à puncto
                  <var>.o.</var>
                tertia
                  <lb/>
                ipſi
                  <var>.n.i.</var>
                & à puncto
                  <var>.a.</var>
                quarta
                  <var>.x.a.e.</var>
                parallela ipſi
                  <var>.
                    <lb/>
                  o.</var>
                inueniemus
                  <var>.b.n.</var>
                productum eſſe differentiæ
                  <var>.n.
                    <lb/>
                  t.</var>
                in ſumma radicum
                  <var>.n.i.</var>
                & cum
                  <var>.d.o.</var>
                et
                  <var>.a.o.</var>
                ſint
                  <lb/>
                quadrata radicum prædictarum: </s>
                <s xml:id="echoid-s527" xml:space="preserve">b.e. æquale erit
                  <var>.
                    <lb/>
                  n.u.</var>
                cum vtrunque horum productorum æquale ſit
                  <var>.
                    <lb/>
                  x.u.</var>
                ex quo gnomon
                  <var>.e.d.u.</var>
                æqualis erit producto
                  <var>.
                    <lb/>
                  b.n.</var>
                quod ſcire cupiebamus.</s>
              </p>
              <div xml:id="echoid-div122" type="float" level="4" n="1">
                <figure xlink:label="fig-0050-02" xlink:href="fig-0050-02a">
                  <image file="0050-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0050-02"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div124" type="math:theorem" level="3" n="61">
              <head xml:id="echoid-head77" xml:space="preserve">THEOREMA
                <num value="61">LXI</num>
              .</head>
              <p>
                <s xml:id="echoid-s528" xml:space="preserve">CVR propoſitum aliquem numerum diuiſuri in duas eiuſmodi partes, vt diffe-
                  <lb/>
                rentia radicum quadratarum æqualis ſit alteri numero propoſito, cuius ta-
                  <lb/>
                men quadratum dimidij primi quadratum non excedat. </s>
                <s xml:id="echoid-s529" xml:space="preserve">Rectè ſecundum numerum
                  <lb/>
                in ſeipſum multiplicant, productum verò ex primo numero detrahunt,
                  <reg norm="rurſusque" type="simple">rurſusq́;</reg>
                di
                  <lb/>
                midium reſidui quadrant, & quadratum hoc ex quadrato dimidij primi ſubtrahunt,
                  <lb/>
                atque ita radice quadrata reſidui, dimidio primi coniuncta, pars maior datur, qua
                  <lb/>
                ex ipſo dimidio detracta, pars minor relinquitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s530" xml:space="preserve">Exempli gratia, propoſito numero .20. ita ut propoſitum eſt, diuidendo, nem-
                  <lb/>
                pe vt differentia radicum quadratarum dictarum partium æqualis ſit binario, bina-
                  <lb/>
                rium hocin ſeipſum multiplicabimus, cuius quadratum .4. è primo numero .20. de­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>