Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (40) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div126" type="math:theorem" level="3" n="62">
              <p>
                <s xml:id="echoid-s537" xml:space="preserve">
                  <pb o="40" rhead="IO. BAPT. BENED." n="52" file="0052" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0052"/>
                g. æqualis erit
                  <var>.g.d.</var>
                tum productum
                  <var>.a.g.</var>
                in
                  <var>.g.d.</var>
                ſit
                  <var>.a.i.</var>
                et
                  <var>.t.i.</var>
                æqualis
                  <var>.a.i.</var>
                et
                  <var>.l.i.</var>
                pariter
                  <lb/>
                ſecetur æqualis
                  <var>.t.i.</var>
                quæ omnia ex diametro
                  <var>.q.d.</var>
                cogitari poſſunt: </s>
                <s xml:id="echoid-s538" xml:space="preserve">erit igitur
                  <var>.u.i.</var>
                æ-
                  <lb/>
                qualis
                  <var>.i.d.</var>
                  <reg norm="ſupereritque" type="simple">ſupereritq́;</reg>
                quadratum
                  <var>.q.u.</var>
                differentiæ
                  <var>.a.h.</var>
                cognitum, hoc verò cogi-
                  <lb/>
                temus diuiſum eſſe in .4. partes æquales medijs diametris
                  <var>.p.r.</var>
                et
                  <var>.n.e.</var>
                </s>
                <s xml:id="echoid-s539" xml:space="preserve">quare
                  <reg norm="vnaquæque" type="simple">vnaquæq;</reg>
                  <lb/>
                partium cognoſcetur, &
                  <reg norm="quadratum" type="context">quadratũ</reg>
                erit ipſius
                  <var>.a.K.</var>
                aut ipſius
                  <var>.K.h.</var>
                dimidij
                  <var>.a.h</var>
                . </s>
                <s xml:id="echoid-s540" xml:space="preserve">Quòd
                  <lb/>
                ſi aliquod iſtorum quadratorum detrahere voluerimus, nempe
                  <var>.n.r.</var>
                ex dimidio ſum
                  <lb/>
                  <var>.b.</var>
                duorum quadratorum
                  <var>.q.i.</var>
                et
                  <var>.i.d.</var>
                cognitæ, hac via procedemus, primum con
                  <lb/>
                ſiderabimus
                  <var>.t.r.</var>
                coniunctam
                  <var>.t.i.</var>
                quæ quantitates erunt ſumma dimidij
                  <reg norm="duorum" type="context">duorũ</reg>
                qua-
                  <lb/>
                dratorum
                  <var>.q.i.</var>
                et
                  <var>.i.d.</var>
                quando quidem
                  <var>.t.r.</var>
                  <lb/>
                  <reg norm="dimidium" type="context">dimidiũ</reg>
                eſt quadrati
                  <var>.t.l.</var>
                et
                  <var>.t.i.</var>
                  <reg norm="dimidium" type="context">dimidiũ</reg>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0052-01a" xlink:href="fig-0052-01"/>
                gnomonis
                  <var>.t.i.l.</var>
                coniunctum dimidio
                  <lb/>
                quadrati
                  <var>.i.d.</var>
                ex quo
                  <var>.i.t.r.</var>
                dimidium erit
                  <var>.
                    <lb/>
                  b.</var>
                ex qua quantitate
                  <var>.i.t.r.</var>
                cogitare debe
                  <lb/>
                mus detrahi quadratum ipſius
                  <var>.K.h.</var>
                nem
                  <lb/>
                pe
                  <var>.n.r</var>
                : </s>
                <s xml:id="echoid-s541" xml:space="preserve">quare quod ſupereſt cognitum
                  <lb/>
                erit nempe
                  <var>.y.s.</var>
                cum
                  <var>.n.i.</var>
                ſed
                  <var>.y.m.</var>
                æqualis
                  <lb/>
                eſt
                  <var>.n.i.</var>
                et
                  <var>.y.m.</var>
                cum
                  <var>.y.s.</var>
                conſtituunt qua-
                  <lb/>
                dratum
                  <var>.p.m</var>
                . </s>
                <s xml:id="echoid-s542" xml:space="preserve">
                  <reg norm="Itaque" type="simple">Itaq;</reg>
                  <var>.p.m.</var>
                quadratum &
                  <lb/>
                conſequenter
                  <var>.p.s.</var>
                eius radix cognoſce-
                  <lb/>
                tur, ita etiam & productum huius
                  <var>.p.s.</var>
                in
                  <var>.
                    <lb/>
                  s.x.</var>
                æqualis
                  <var>.c.</var>
                nempe
                  <var>.p.x</var>
                :
                  <reg norm="eſtque" type="simple">eſtq́;</reg>
                produ-
                  <lb/>
                ctum huiuſmodi ſemper minus quantita
                  <lb/>
                te
                  <var>.r.t.i</var>
                : per
                  <var>.u.i.</var>
                æquale quadrato minori
                  <var>.
                    <lb/>
                  i.d</var>
                . </s>
                <s xml:id="echoid-s543" xml:space="preserve">quare
                  <var>.i.d.</var>
                cognoſcetur, conſequen-
                  <lb/>
                ter
                  <var>.i.</var>
                @q. tanquam reſiduum ex
                  <var>.b.</var>
                & eo-
                  <lb/>
                rum radices quadratæ cognoſcentur
                  <var>.a.
                    <lb/>
                  g.</var>
                et
                  <var>.g.d</var>
                .</s>
              </p>
              <div xml:id="echoid-div127" type="float" level="4" n="2">
                <figure xlink:label="fig-0052-01" xlink:href="fig-0052-01a">
                  <image file="0052-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0052-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div129" type="math:theorem" level="3" n="63">
              <head xml:id="echoid-head79" xml:space="preserve">THEOREMA
                <num value="63">LXIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s544" xml:space="preserve">IDEM præſtari hac alia via, meo iudicio poteſt. </s>
                <s xml:id="echoid-s545" xml:space="preserve">Secundus numerus in
                  <reg norm="ſuum" type="context">ſuũ</reg>
                dimi
                  <lb/>
                  <reg norm="dium" type="context">diũ</reg>
                multiplicetur,
                  <reg norm="productum" type="context">productũ</reg>
                autem ex dimidio primi detrahatur, ex quo re-
                  <lb/>
                manens erit productum vnius quadratæ radicis in alteram partium primi numeri
                  <lb/>
                quæſitarum, deinde productum hoc duplicetur, & primo numero dato coniunga-
                  <lb/>
                tur,
                  <reg norm="ſicque" type="simple">ſicq́;</reg>
                huius ſummæ quadrata radix erit ſumma radicum quadratarum dictarum
                  <lb/>
                partium, cui iuncto producto ex quadrageſimoquinto theoremate ſingulæ radices
                  <lb/>
                proferentur.</s>
              </p>
              <p>
                <s xml:id="echoid-s546" xml:space="preserve">Exempli gratia, primus numerus diuiſibilis erat .50. alter verò .6. </s>
                <s xml:id="echoid-s547" xml:space="preserve">Iam ſi multi-
                  <lb/>
                plicemus .6. per .3. nempe dimidium proferetur numerus .18. quo ex dimidio pri-
                  <lb/>
                mi, nempe .25. detracto, ſupererit .7. productum vnius radicis in alteram, quod du
                  <lb/>
                plicatum dabit .14. quo coniuncto cum primo numero .50. dabitur numerus .64.
                  <lb/>
                cuius quadrata radix ſcilicet .8. erit ſumma radicum duarum partium quæſitarum,
                  <lb/>
                qua & producto .7. ex quadrag eſimoquinto theoremate dictæ radices diſtinguen,
                  <lb/>
                tur, quarum vna erit .7. & altera
                  <var>.I</var>
                .</s>
              </p>
              <p>
                <s xml:id="echoid-s548" xml:space="preserve">Vtautem hocſpeculemur, præcedenti figura vti poterimus, in qua patet
                  <var>.t.r.</var>
                pro
                  <lb/>
                ductum eſſe ſecundi numeri
                  <var>.c.</var>
                nempe
                  <var>.a.h.</var>
                hoc eſt
                  <var>.t.u.</var>
                in dimidio
                  <var>.a.e.</var>
                ſcilicet
                  <var>.p.t.</var>
                re-
                  <lb/>
                ſiduum autem dimidij primi
                  <var>.b.</var>
                eſſe
                  <var>.t.i.</var>
                nempe
                  <var>.a.i.</var>
                productum radicum, quod ſupple­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>