Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (43) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div134" type="math:theorem" level="3" n="67">
              <p>
                <s xml:id="echoid-s568" xml:space="preserve">
                  <pb o="43" rhead="THEOREM. ARIT." n="55" file="0055" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0055"/>
                ita vt ſimul prouenientibus in ſummam collectis huius fummæ ad primum nume-
                  <lb/>
                rum propoſitum proportio futura ſit ea quæ eſt tertij ad ſecundum. </s>
                <s xml:id="echoid-s569" xml:space="preserve">Rectè dimidium
                  <lb/>
                primi numeri in ſeipſum multiplicant, ex quo quadrato ſecundum numerum detra
                  <lb/>
                hunt, tum reſidui radicem ſumunt, quam iungentes, & detrahentes ex dimidio
                  <lb/>
                primi, partes quæſitas habent, cætera ex neceſsitate ſubſequuntur, prout nunc a
                  <lb/>
                me docebitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s570" xml:space="preserve">Exempli gratia, proponitur numerus .20. in duas partes diuidendus, quibus po
                  <lb/>
                ſtea mutuò diuiſis, & per ſummam prouenientium diuiſa ſumma quadratorum,
                  <lb/>
                dent
                  <reg norm="ſecundum" type="context">ſecundũ</reg>
                numerum propoſitum .36. nam reliqua conſequuntur. </s>
                <s xml:id="echoid-s571" xml:space="preserve">Itaque .10.
                  <lb/>
                dimidium primi in ſeipſum multiplicatur, & ex quadrato .100. eruitur numerus .36.
                  <lb/>
                nempe ſecundus propoſitus reſidui porrò .64. quadrata radix .8. fumitur, quam con
                  <lb/>
                iungimus & detrahimus ex dimidio primi ſcilicet .10. ex quo partes quæſitæ dabun
                  <lb/>
                tur .18. et .2. quæ mutuo diuiſæ dabunt ſuorum prouenientium ſummam .9. cum no-
                  <lb/>
                na parte, per quam diuidentes .328. ſummam quadratorum ipſarum partium,
                  <lb/>
                exactè dabitur numerus .36. qui fuit ſecundò propoſitus. </s>
                <s xml:id="echoid-s572" xml:space="preserve">Tum ſi per ſingu-
                  <lb/>
                las iam inuentas partes quilibet numerus diuiſus fuerit, verbi gratia .72. ſumma pro
                  <lb/>
                uenientium erit .40. qui num@rus eandem proportionem cum primo nempe .20. ſer
                  <lb/>
                uabit, quam tertius propoſitus .72. cum ſecundo .36.</s>
              </p>
              <p>
                <s xml:id="echoid-s573" xml:space="preserve">Quod vt ſpeculemur, primus numerus ſignificetur linea
                  <var>.n.e.</var>
                ita diuidendus à
                  <lb/>
                puncto
                  <var>.o.</var>
                vt diuiſa parte
                  <var>.n.o.</var>
                per
                  <var>.o.e.</var>
                et
                  <var>.o.e.</var>
                per
                  <var>.n.o.</var>
                & per ſummam prouenien-
                  <lb/>
                tium diuiſa ſumma quadratorum
                  <var>.n.o.</var>
                et
                  <var>.o.e.</var>
                detur ſecundus numerus notatus linea
                  <var type="line">.
                    <lb/>
                  q.K</var>
                . </s>
                <s xml:id="echoid-s574" xml:space="preserve">Porrò meminiſſe oportet quòd .26. theoremate probatum fuit vltimum hoc
                  <lb/>
                proueniens æquale producto partium inter ſe futurum, nempe producto
                  <var>.n.o.</var>
                in
                  <var>.o.
                    <lb/>
                  e.</var>
                quod ſignificetur rectangulo
                  <var>.n.e</var>
                . </s>
                <s xml:id="echoid-s575" xml:space="preserve">Itaque datis
                  <var>.n.e.</var>
                et
                  <var>.q.K.</var>
                ſi .45. theorema conſu-
                  <lb/>
                luerimus, partes
                  <var>.n.o.</var>
                et
                  <var>.o.e.</var>
                cognoſcemus.</s>
              </p>
              <p>
                <s xml:id="echoid-s576" xml:space="preserve">Proponitur deinde tertius quilibetnumerus, verbi gratia
                  <var>.x.</var>
                diuidendus per
                  <var>.o.e.</var>
                  <lb/>
                et
                  <var>.o.n.</var>
                qui ſi diuidatur per
                  <var>.o.e.</var>
                dabit pro
                  <lb/>
                ueniens
                  <var>.b.o</var>
                . </s>
                <s xml:id="echoid-s577" xml:space="preserve">Si verò per
                  <var>.n.o.</var>
                proueniens
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0055-01a" xlink:href="fig-0055-01"/>
                erit
                  <var>.d.n.</var>
                nunc aſſerimus
                  <reg norm="ſummam" type="context">ſummã</reg>
                duorum
                  <lb/>
                horum prouenientium, ſic primo nume-
                  <lb/>
                ro
                  <var>.n.e.</var>
                dato proportionatam eſſe, ſicut
                  <lb/>
                tertius
                  <var>.x.</var>
                  <reg norm="ſecundo" type="context">ſecũdo</reg>
                  <var>.q.K</var>
                . </s>
                <s xml:id="echoid-s578" xml:space="preserve">Producatur enim li-
                  <lb/>
                nea
                  <var>.d.n.</var>
                donec
                  <var>.n.q.</var>
                æqualis ſit
                  <var>.o.b.</var>
                ex
                  <lb/>
                quo
                  <var>.q.d.</var>
                erit ſumma vltimò prouenien-
                  <lb/>
                tium: </s>
                <s xml:id="echoid-s579" xml:space="preserve">item producatur
                  <var>.e.n.</var>
                donec
                  <var>.n.u.</var>
                æ-
                  <lb/>
                qualis ſit
                  <var>.o.e.</var>
                  <reg norm="termineturque" type="simple">termineturq́</reg>
                rectangulum
                  <var>.
                    <lb/>
                  q.u.</var>
                quod tertio numero propoſito
                  <var>.x.</var>
                vt
                  <lb/>
                patet, æquale erit, </s>
                <s xml:id="echoid-s580" xml:space="preserve">quare ex .15. ſexti aut .
                  <lb/>
                20. ſeptimi eadem erit proportio
                  <var>.d.n.</var>
                ad
                  <lb/>
                  <var>n.q.</var>
                quæ
                  <var>.u.n.</var>
                nempe
                  <var>.o.e.</var>
                ad
                  <var>.o.n.</var>
                & com-
                  <lb/>
                ponendo
                  <var>.d.q.</var>
                ad
                  <var>.q.n.</var>
                ſicut
                  <var>.e.n.</var>
                ad
                  <var>.n.o.</var>
                &
                  <lb/>
                permutando
                  <var>.d.q.</var>
                ad
                  <var>.e.n.</var>
                quæ
                  <var>.q.n.</var>
                hoc eſt
                  <var>.
                    <lb/>
                  b.o.</var>
                ad
                  <var>.o.n.</var>
                nempe ſicut
                  <var>.b.e.</var>
                ad
                  <var>.e.n.</var>
                ſuperficialem, ex prima ſexti aut .18. vel .19.
                  <lb/>
                ſeptimi, ſed rectangulum
                  <var>.e.n.</var>
                conſtitutum fuit æquale numero
                  <var>.q.K</var>
                . </s>
                <s xml:id="echoid-s581" xml:space="preserve">itaque verum
                  <lb/>
                eſt propoſitum.</s>
              </p>
              <div xml:id="echoid-div134" type="float" level="4" n="1">
                <figure xlink:label="fig-0055-01" xlink:href="fig-0055-01a">
                  <image file="0055-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0055-01"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>