Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 70
81 71
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
90 78
91 79
92 80
93 81
94 82
95 89
96 84
97 85
98 96
99 87
100 88
< >
page |< < (59) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div177" type="math:theorem" level="3" n="90">
              <p>
                <s xml:id="echoid-s776" xml:space="preserve">
                  <pb o="59" rhead="THEOREM. ARIT." n="71" file="0071" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0071"/>
                eſſe gnomoni
                  <var>.e.c.u.</var>
                  <reg norm="itemque" type="simple">itemq́;</reg>
                gnomonem
                  <var>.b.f.d.</var>
                æqualem gnomoni
                  <var>.b.o.d.</var>
                at hic gno-
                  <lb/>
                mon
                  <var>.b.o.d.</var>
                ex præſuppoſito, maior eſt gnomone
                  <var>.e.o.u.</var>
                duabus vnitatibus
                  <var>.b.</var>
                et
                  <var>.d.</var>
                  <lb/>
                Itaque etiam gnomon
                  <var>.b.f.d.</var>
                duabus vnitatibus gnomonem
                  <var>.e.c.u.</var>
                ſuperabit. </s>
                <s xml:id="echoid-s777" xml:space="preserve">Qua-
                  <lb/>
                re
                  <var>.b.f.d.</var>
                erit impar immediatè ſequens ternarium, qui coniunctus quadrato
                  <var>.o.c.</var>
                  <lb/>
                quadratum ſubſequens componet. </s>
                <s xml:id="echoid-s778" xml:space="preserve">Eadem ratione probabitur de quadrato
                  <var>.o.n.</var>
                ſe
                  <lb/>
                quenti
                  <var>.o.f.</var>
                & gnomone
                  <var>.i.n.a.</var>
                cum hic ordo ſpeculationis ſit vniuerſalis. </s>
                <s xml:id="echoid-s779" xml:space="preserve">In
                  <lb/>
                quo cernitur quemlibet gnomonem ſibi
                  <reg norm="contiguum" type="context">contiguũ</reg>
                inferiorem ſemper duabus vni-
                  <lb/>
                tat ibus excedere, cumque quadrata non niſi gnomonibus ſibi inuicem ſuccedant.
                  <lb/>
                </s>
                <s xml:id="echoid-s780" xml:space="preserve">Sed
                  <reg norm="cum" type="context">cũ</reg>
                primus
                  <var>.e.c.u.</var>
                diſpar fuerit,
                  <reg norm="proculdubio" type="simple">ꝓculdubio</reg>
                  <reg norm="etiam" type="context">etiã</reg>
                  <reg norm="neceſſarioque" type="simple">neceſſarioq́;</reg>
                cæteri diſpares
                  <reg norm="erunt" type="context">erũt</reg>
                .
                  <lb/>
                </s>
                <s xml:id="echoid-s781" xml:space="preserve">Ex qua ſpeculatione, oritur regula ab antiquis tradita
                  <lb/>
                inueniendi vltimi numeri diſparis
                  <reg norm="concurrentis" type="context">cõcurrentis</reg>
                ad
                  <reg norm="compo­ ſitionem" type="context">cõpo­
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0071-01a" xlink:href="fig-0071-01"/>
                  ſitionem</reg>
                alicuius quadrati. </s>
                <s xml:id="echoid-s782" xml:space="preserve">Vt ſi quis ſeire deſideret nu-
                  <lb/>
                merum vltimum diſparem, quo mediante quadratum
                  <var>.
                    <lb/>
                  o.n.</var>
                conſtitutum fuit, quod aliud non eſt quam ſcire
                  <lb/>
                quantus ſit numerus vltimi gnomonis
                  <var>.i.n.a.</var>
                æqualis gno
                  <lb/>
                moni
                  <var>.i.o.a</var>
                . </s>
                <s xml:id="echoid-s783" xml:space="preserve">Itaque vt ſciamus hunc gnomonem
                  <var>.i.o.a.</var>
                  <lb/>
                patet duplicandam eſſe radicem
                  <var>.o.e.b.i.</var>
                  <reg norm="dabiturque" type="simple punctuation">dabiturq́,</reg>
                  <var>.o.e.
                    <lb/>
                  b.i.</var>
                et
                  <var>.o.u.d.a.</var>
                vbi bis reperitur
                  <var>.o.</var>
                nos autem tantummo
                  <lb/>
                do quærimus ſcire gnomonem .i.b.e.o.u.d.a. </s>
                <s xml:id="echoid-s784" xml:space="preserve">Itaque
                  <lb/>
                minor eſt vnitate duplo radicis, cum unitas
                  <var>.o.</var>
                bis repe-
                  <lb/>
                tatur, quæ tamen in gnomone ſemel tantum ſumebatur.</s>
              </p>
              <div xml:id="echoid-div177" type="float" level="4" n="1">
                <figure xlink:label="fig-0071-01" xlink:href="fig-0071-01a">
                  <image file="0071-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0071-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div179" type="math:theorem" level="3" n="91">
              <head xml:id="echoid-head108" xml:space="preserve">THEOREMA
                <num value="91">XCI</num>
              .</head>
              <p>
                <s xml:id="echoid-s785" xml:space="preserve">CVR ſumma quadratorum, quorum radices ſunt in proportione ſeſquitertia
                  <lb/>
                nempe .4. ad .3. quadrata ſit.</s>
              </p>
              <p>
                <s xml:id="echoid-s786" xml:space="preserve">Exempli gratia, ſumemus quadratum .3. ſcilicet 9. quod in ſummam cum qua-
                  <lb/>
                drato .4. colligemus, nempè .16.
                  <reg norm="eritque" type="simple">eritq́;</reg>
                quadratum .25. & ita quadratum .6. hoc eſt
                  <num value="36">.
                    <lb/>
                  36.</num>
                collectum cum quadrato .8. nempè .64. efficiet quadratum .100. ita etiam qua-
                  <lb/>
                dratum .9. hoceſt .81. coniunctum quadrato .12. nempè .144. producet quadra-
                  <lb/>
                tum .225.</s>
              </p>
              <p>
                <s xml:id="echoid-s787" xml:space="preserve">In cuius gratiam ſint duo quadrata ſubſcripta
                  <var>.q.o.</var>
                et
                  <var>.q.a.</var>
                quorum radices ſint
                  <var>.q.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0071-02a" xlink:href="fig-0071-02"/>
                g. et
                  <var>.q.p.</var>
                hoc eſt
                  <var>.q.g.</var>
                quatuor vnitatum, et
                  <var>.q.
                    <lb/>
                  p.</var>
                trium, ex quo
                  <var>.q.a.</var>
                erit .16. vnitatum et
                  <var>.q.o.</var>
                  <lb/>
                nouem. </s>
                <s xml:id="echoid-s788" xml:space="preserve">Ad hæc cogitemus applicari quadra-
                  <lb/>
                to
                  <var>.q.a.</var>
                gnomonem
                  <var>.f.s.h.</var>
                tam amplum ſiue la-
                  <lb/>
                tum
                  <reg norm="quam" type="context">quã</reg>
                gnomon
                  <var>.b.a.g.</var>
                nempè vt
                  <var>.h.</var>
                ſit æqua
                  <lb/>
                lis .g: g. verò differentia ſit qua
                  <var>.q.g.</var>
                maior eſt
                  <var>.
                    <lb/>
                  q.p.</var>
                  <reg norm="huncque" type="simple">huncq́;</reg>
                gnomonem
                  <var>.f.s.h.</var>
                dico ęqualem eſ
                  <lb/>
                ſe quadrato
                  <var>.q.o.</var>
                nam ex preſuppoſito
                  <var>.g.</var>
                terra
                  <lb/>
                dicem
                  <var>.q.p.</var>
                ingreditur, & quater
                  <var>.q.g.</var>
                ex quo,
                  <lb/>
                tres partes
                  <var>.q.k.p.</var>
                inter ſe æquales ſunt vnde
                  <lb/>
                etiam quadratum
                  <var>.q.o.</var>
                nouem partibus ſuper-
                  <lb/>
                ficialibus quadratis conſtabit, quarum ſingula
                  <lb/>
                rum radix æqualis erit
                  <var>.g.</var>
                cumque præcedenti
                  <lb/>
                theoremate didicerimus quemlibet gnomo-
                  <lb/>
                nem quadrati immediatè ſequentis æquę amplitudinis cum gnomone præcedentis, </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>