Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
< >
page |< < (61) of 445 > >|
THEOR. ARITH.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div181" type="math:theorem" level="3" n="92">
              <p>
                <s xml:id="echoid-s808" xml:space="preserve">
                  <var>
                    <pb o="61" rhead="THEOR. ARITH." n="73" file="0073" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0073"/>
                  n.k.</var>
                ipſius quadratum numerorum integrorum cognoſcetur, cui addito gnomone
                  <var type="gnomon">.
                    <lb/>
                  n.o.K.</var>
                cognoſcemus numerum
                  <var>.u.i.</var>
                quæſitum.</s>
              </p>
              <p>
                <s xml:id="echoid-s809" xml:space="preserve">Sed cum nobis hæc via, tenenda propoſitum non fuit, hoc eſt primo loco inue
                  <lb/>
                niendi quadrati minoris
                  <var>.n.K.</var>
                ideo ſupereſt probandum gnomonem
                  <var>.t.o.c.</var>
                vnitati
                  <reg norm="ae- qualem" type="simple">ę-
                    <lb/>
                  qualem</reg>
                eſſe, nempe quadratulo
                  <var>.m.a.</var>
                quod patebit, ſi conſideremus nos ſumpſiſſe
                  <lb/>
                rectangulum
                  <var>.r.c.</var>
                pro dimidio gnomonis
                  <var>.n.o.K</var>
                . </s>
                <s xml:id="echoid-s810" xml:space="preserve">etenim ſi ſupplemento etiam
                  <var>.n.r.</var>
                qua
                  <lb/>
                dratulum æquale
                  <var>.m.a.</var>
                adderetur, pateret gnomonem
                  <var>.n.a.K.</var>
                cum dicto quadratulo
                  <lb/>
                collectum, æqualem eſſe gnomoni
                  <var>.n.o.K</var>
                : cum duo ſupplementa
                  <var>.m.t.</var>
                et
                  <var>.m.c.</var>
                inter ſe
                  <lb/>
                fint æqualia. </s>
                <s xml:id="echoid-s811" xml:space="preserve">Quamobrem inuento quadrato
                  <var>.t.c.</var>
                ex dimidio gnomonis cognito,
                  <lb/>
                additur vnitas, gnomon ſcilicet
                  <var>.t.o.c.</var>
                ex quo cognoſcitur numerus
                  <var>.u.i.</var>
                quæſitus.
                  <lb/>
                </s>
                <s xml:id="echoid-s812" xml:space="preserve">Quod autem quadratum
                  <var>.g.p.</var>
                numeris integris conſtet, hac ratione probatur viſum
                  <lb/>
                enim fuit ſupra quadratum
                  <var>.n.K.</var>
                verè quadratum eſſe, & numeris integris conſtare,
                  <lb/>
                pariter etiam
                  <var>.t.c.</var>
                  <reg norm="ſeque" type="simple">ſeq́;</reg>
                mutuo conſequi (nam
                  <var>.K.c.</var>
                eſt vnitas linearis) ex quo gnomon
                  <lb/>
                  <var>n.a.K.</var>
                numero diſpari conſtabit, ex ijs quæ .90. theoremate probata fuerunt. </s>
                <s xml:id="echoid-s813" xml:space="preserve">
                  <reg norm="Itaque" type="simple">Itaq;</reg>
                  <lb/>
                ex eodem theoremate neceſſe eſt gnomonem
                  <var>.t.d.c.</var>
                etiam numero diſpari conſtare,
                  <lb/>
                ita vt à numero
                  <var>.n.a.K.</var>
                non niſi duabus vnitatibus differat, nempe vt
                  <var>.c.p.</var>
                ſit vnitas li-
                  <lb/>
                nearis, ſed ita reuera eſt, numerus enim
                  <var>.u.d.i.</var>
                ex præſuppoſito par eſt, </s>
                <s xml:id="echoid-s814" xml:space="preserve">quare nume
                  <lb/>
                rus
                  <var>.t.d.c.</var>
                diſpar erit, cum alterum vnitate ſuperet, videlicet gnomone
                  <var>.t.o.c.</var>
                vnita
                  <lb/>
                ri æquali, tum
                  <var>.n.a.K.</var>
                minor eſt
                  <var>.n.o.K.</var>
                ex eodem gnomone
                  <var>.t.o.c.</var>
                unitati æquali. </s>
                <s xml:id="echoid-s815" xml:space="preserve">Ita
                  <lb/>
                que
                  <var>.n.a.K.</var>
                minor erit
                  <var>.u.d.i.</var>
                per vnitatem, & minor
                  <var>.t.d.c.</var>
                per duas unitates, ex quo ſe-
                  <lb/>
                quitur
                  <var>.g.p.</var>
                eſſe quadratum
                  <reg norm="integrorum" type="context">integrorũ</reg>
                ex dicto theoremate ac con ſequens quadrato
                  <lb/>
                  <var>t.c</var>
                . </s>
                <s xml:id="echoid-s816" xml:space="preserve">quare
                  <var>.c.p.</var>
                vnitas erit, & radices
                  <var>.q.K.</var>
                et
                  <var>.q.p.</var>
                horum quadratorum numero bina-
                  <lb/>
                rio inter ſe different. </s>
                <s xml:id="echoid-s817" xml:space="preserve">Vnà etiam ſcienda eſt cauſa, cur numerus propoſitus neceſſa
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0073-01a" xlink:href="fig-0073-01"/>
                riò binario maior eſſe debeat. </s>
                <s xml:id="echoid-s818" xml:space="preserve">Etenim
                  <reg norm="cum" type="context">cũ</reg>
                ipſe
                  <lb/>
                ſit futurus gnomon
                  <var>.n.o.K.</var>
                nec poſſit minor eſſe
                  <lb/>
                numero ternario, vt patet ex .90. theoremate,
                  <lb/>
                idcirco ſequitur neceſſariò maiorem eſſe bina-
                  <lb/>
                rio debere. </s>
                <s xml:id="echoid-s819" xml:space="preserve">Quòd ſi diſpar numerus propone-
                  <lb/>
                retur, nec forma operis nec ſpeculationis
                  <reg norm="mutan- da" type="context">mutã-
                    <lb/>
                  da</reg>
                eſſet. </s>
                <s xml:id="echoid-s820" xml:space="preserve">Non erit tamen neceſſarium vt ipſa
                  <lb/>
                quadrata
                  <var>.n.K.</var>
                et
                  <var>.g.p.</var>
                numeris integris conſta-
                  <lb/>
                rent. </s>
                <s xml:id="echoid-s821" xml:space="preserve">Sæpius enim fractis
                  <reg norm="componerentur" type="context">cõponerentur</reg>
                , quod
                  <lb/>
                ex .90. theoremate facile erit ſpeculari nihilo-
                  <lb/>
                minus fractis integris,
                  <reg norm="ipſisque" type="simple">ipſisq́;</reg>
                collectis cum ſuis
                  <lb/>
                fractis ſummæ eſſent quadratæ.</s>
              </p>
              <div xml:id="echoid-div181" type="float" level="4" n="1">
                <figure xlink:label="fig-0073-01" xlink:href="fig-0073-01a">
                  <image file="0073-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0073-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div183" type="math:theorem" level="3" n="93">
              <head xml:id="echoid-head110" xml:space="preserve">THEOREMA
                <num value="93">XCIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s822" xml:space="preserve">CVR propoſitis duobus numeris altero pari, altero verò diſpari, duplo primi
                  <lb/>
                minore per vnitatem, ſi alium inuenire numerum voluerimus, cui alterum iſto
                  <lb/>
                rum coniunctum proferat quadratum, & altero detracto, quadratum ſuperſit. </s>
                <s xml:id="echoid-s823" xml:space="preserve">Re-
                  <lb/>
                ctè datos numeros in ſummam colligemus, quam ſummam in duas quam maximas
                  <lb/>
                poterimus partes diuidemus, quarum vna pari, altera diſpari conſtet, tum vtran-
                  <lb/>
                que in ſeipſam multiplicabimus, & quadrato minori, duorum numerorum propo-
                  <lb/>
                ſitorum quemuis ademus, ex quo cupimus nobis quadratum minus ſupereſſe, & pro
                  <lb/>
                ueniet nobis numerum quæſitum.</s>
              </p>
              <p>
                <s xml:id="echoid-s824" xml:space="preserve">Exempli gtatia, proponuntur numeri .11. et .6. quorum alter alicui numero ad- </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>