Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
91 79
92 80
93 81
94 82
95 89
96 84
97 85
98 96
99 87
100 88
101 89
102 90
103 91
104 92
105 93
106 94
107 95
108 96
109 97
110 98
111 99
112 100
113 101
114 102
115 103
116 104
117 105
118 106
119 107
120 108
< >
page |< < (87) of 445 > >|
THEOREM. ARITH.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div244" type="math:theorem" level="3" n="128">
              <p>
                <s xml:id="echoid-s1134" xml:space="preserve">
                  <pb o="87" rhead="THEOREM. ARITH." n="99" file="0099" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0099"/>
                tionatus .216. ad .156. vt .18. ad .13. maniteſtum eſt exijſdem, nam tam .18. quam
                  <num value="13">.
                    <lb/>
                  13.</num>
                multiplicatus fuit per .12.</s>
              </p>
            </div>
            <div xml:id="echoid-div245" type="math:theorem" level="3" n="129">
              <head xml:id="echoid-head147" xml:space="preserve">THEOREMA
                <num value="129">CXXIX</num>
              .</head>
              <p>
                <s xml:id="echoid-s1135" xml:space="preserve">ALIVD proponitur problema hoc modo: </s>
                <s xml:id="echoid-s1136" xml:space="preserve">ſupponitur obſidio alicuius loci, vbi
                  <lb/>
                alimento ad nutriendos .10000. homines ſufficiunt pro quinque menſibus tan-
                  <lb/>
                tum, ſed quia eum locum obſidione non liberari putatur niſi .18. menſibus exactis,
                  <lb/>
                quæritur, quot homines eo tempore illis alimentis nutriri poſſint, hoc eſt .18.
                  <lb/>
                menſibus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1137" xml:space="preserve">Præcipitregula, vt multiplicetur primus numerus, hoc eſt hominum .10000. cum
                  <lb/>
                ſecundo, hoc eſt menſium quinque, productum verò diuidatur per .18. hoc eſt men-
                  <lb/>
                ſium, </s>
                <s xml:id="echoid-s1138" xml:space="preserve">tunc proueniet .2777. cum .7. nonis.</s>
              </p>
              <p>
                <s xml:id="echoid-s1139" xml:space="preserve">Cuius operationis ratio eſt hæc, ſint exempli gratia duo hic ſubſcripta producta
                  <lb/>
                ſuperficialia
                  <var>.a.n.</var>
                et
                  <var>.o.u.</var>
                inuicem æqualia, ſed tal@ figura delineata, vt proportio
                  <var>.u.
                    <lb/>
                  x.</var>
                ad
                  <var>.x.o.</var>
                ſit, vt .10000. ad quinque, & proportio
                  <var>a.x.</var>
                ad
                  <var>.x.o.</var>
                ſit vt .18. ad quinque,
                  <lb/>
                ct
                  <var>.x.n.</var>
                ſit nobis ignota, quæ quidem eſt illa, quæ indagatur, ita
                  <reg norm="quod" type="simple">ꝙ</reg>
                vnumquodque
                  <lb/>
                iſtorum productorum ſignificabit alimentum, et
                  <var>.u.x.</var>
                ſignificabit numerum homi-
                  <lb/>
                num .10000. qui quidem homines comederent totum alimentum
                  <var>.u.o.</var>
                ſpacio tem-
                  <lb/>
                poris
                  <var>.x.o.</var>
                quinque menſium, proptereà quòd
                  <var>u.o.</var>
                ſupponitur productum eſſe ab
                  <var>.
                    <lb/>
                  u.x.</var>
                in
                  <var>.x.o</var>
                . </s>
                <s xml:id="echoid-s1140" xml:space="preserve">Deinde
                  <reg norm="ſupponendo" type="context">ſupponẽdo</reg>
                  <var>.a.x.</var>
                tem
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0099-01a" xlink:href="fig-0099-01"/>
                pus eſſe .18. menſium, ergo
                  <var>.x.n.</var>
                ſignifi-
                  <lb/>
                cabit numerum hominum, qui eo tem-
                  <lb/>
                poris ſpacio ali poſſunt, hoc eſt
                  <var>.x.a.</var>
                ali-
                  <lb/>
                mento
                  <var>.n.a.</var>
                eo quòd
                  <var>.a.n.</var>
                producitur ex
                  <var>.
                    <lb/>
                  n.x.</var>
                in
                  <var>.a.x.</var>
                vnde ex .15. ſexti, ſeu ex, 20.
                  <lb/>
                ſeptimi proportio
                  <var>.x.u.</var>
                ad
                  <var>.x.n.</var>
                  <reg norm="eadem" type="context">eadẽ</reg>
                erit,
                  <lb/>
                quę
                  <var>.a.x.</var>
                ad
                  <var>.x.o.</var>
                quapropter rectè factum
                  <lb/>
                erit accipere
                  <reg norm="productum" type="context">productũ</reg>
                  <var>.u.o.</var>
                quodidem
                  <lb/>
                eſt in quantitate, quod productum .2. n. & ipſum diuidere per
                  <var>.a.x.</var>
                vnde nobis
                  <lb/>
                proueniat
                  <var>.n.x</var>
                .</s>
              </p>
              <div xml:id="echoid-div245" type="float" level="4" n="1">
                <figure xlink:label="fig-0099-01" xlink:href="fig-0099-01a">
                  <image file="0099-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0099-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div247" type="math:theorem" level="3" n="130">
              <head xml:id="echoid-head148" xml:space="preserve">THEOREMA
                <num value="130">CXXX</num>
              .</head>
              <p>
                <s xml:id="echoid-s1141" xml:space="preserve">QVotieſcunque nobis propoſitum fuerit inuenire tertium terminum, trium ter
                  <lb/>
                minorum continuè proportionalium armonicæ proportionalitatis, quo-
                  <lb/>
                tum duo nobis cogniti ſint, ita agemus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1142" xml:space="preserve">Sint, exempli gratia, tres termini
                  <var>.q.p</var>
                :
                  <var>a.g.</var>
                et
                  <var>.e.c.</var>
                continuæ proportionalium at
                  <lb/>
                monicæ proportionalitatis, quorum
                  <var>.q.p.</var>
                maior et
                  <var>.a.g.</var>
                medius ſint nobis cogniti,
                  <lb/>
                cum ergo voluerimus tertium
                  <var>.e.
                    <lb/>
                  c.</var>
                cognitum nobis eſſe: </s>
                <s xml:id="echoid-s1143" xml:space="preserve">a.g. detra-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0099-02a" xlink:href="fig-0099-02"/>
                hatur ex
                  <var>.q.p.</var>
                differentia verò
                  <var>.d.
                    <lb/>
                  p.</var>
                addatur
                  <var>.q.p.</var>
                quorum ſumma
                  <lb/>
                erit
                  <var>.q.o.</var>
                cognita, qua mediante
                  <lb/>
                diuidatur productum, quod ex
                  <var>.a.
                    <lb/>
                  g.</var>
                in
                  <var>.d.p.</var>
                exurgit, & proueniet no
                  <lb/>
                bis
                  <var>.n.g.</var>
                hoc e@t minor differentia, eo quòd productum
                  <var>.q.o.</var>
                in
                  <var>.n.g.</var>
                æquale eſt pro- </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>