Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
[Figure 221]
[Figure 222]
[Figure 223]
[Figure 224]
[Figure 225]
[Figure 226]
[Figure 227]
[Figure 228]
[Figure 229]
[Figure 230]
< >
page |< < (156) of 445 > >|
168156IO. BAPT. BENED. Sitque; ſemper diuiſum à linea .a.o.e. per medium, ſequitur communi quodam con-
ceptu, nullam nobis difficultatem oborituram, dictum centrum ad quam volueri-
mus partem ducendo, quemadmodum à qualibet alia figura, quæ perfectè rotunda
non eſſet, emergeret;
Vt exempli gratia, ſi imaginabimur pentagonum .K.i.h.f.l. quie
ſcere ſuper eandem lineam .a.b.K. ita ut primum totum latus .i.K. in linea .b.K. extendatur, ducen-
do
poſteà centrum .o. (ponamus.) verſus .l. dubium non eſt, quin oporteat, vt dictum
centrum .o. à linea .b.d. eleuetur, ab eademque; magis diſtet, voluens ſe per arcum vnum
circuli, qui pro ſuo ſemidiametro habeat .o.K. quę maior eſt ipſa .o.a. ex .18. li. primi Eu
cli. vnde ſi à puncto .K. imaginabimur lineam .K.c. reſpicientem centrum regionis
elementaris, dubium non eſt, quin ſi velimus transferre centrum hoc à priori ſitu vſque;
ad dictam lineam, oporteat addere pondus parti ipſius .l. quæ à linea .K.c. fuit ſecta,
aut aliquid de ipſo pondere partis centri detrahere.
quod quibuſuis modis fiat, ar-
duum certè eſt ad efficiendum;
neque hoc etiam accidit figuræ perfectè rotundæ,
cum centrum quod perfectè in medio ipſius ponderis eſt, reperiatur ſemper in linea per-
pendiculari ipſi plano, in quo animaduertendum eſt, quod etiam ſi ipſum planum ap-
pellem;
pro plano tamen perfecto intelligi nolo, ſed pro ſuperficie perfectè ſphaeri-
ca
circa centrum à corporibus grauibus expetitum;
nam ratione magnæ amplitudi-
nis huiuſmodi ſuperficiei, nullam differentiam notatu dignam à perfecto aliquo pla
no exigui interualli ad curuitatem eiuſdem ſuperficiei imaginari poterimus.
Sed ut
redeamus ad ſermonem de reuolutione figuræ rotundæ ſuſceptum, clarum igitur erit
quamlibet minimam vim (vt ita dicam) quę trahat, aut impellat centrum .o. verſus .u.
huiuſmodi figuram reuoluturam, cuius media pars ad trahendum, aut impellendum
punctum .e. ſufficiere;
Imaginemur autem quod li
nea .n.o.u. eſſet libra quędam in figura perfectè
226[Figure 226] rotunda .a.n.e.u. poſita, & vis, quę trahere cen
trum deberet, diuiſa eſſet per medium, cuius
medietas appenſa eſſet extremitati .u. diame-
tri .n.o.u. clarum erit, quod abſque vlla difficultate
reuolueret figuram ſuper lineam .b.a.d. verſus .
d.
quia huius vis, aut pondus nullum contra pon
dus haberet vltra centrum .o. uerſus .n. quod cen-
trum .o. perpetuo quieſcit ſuper. a. in linea .e.o.
a.
per medium diuidente ſemper totum pon-
dus figurę ſuppoſitę.
Tantò facilius ergo tota
dicta vis ap
227[Figure 227] 228[Figure 228] plicata cen
tro, ipsum ver
ſus .u. trahens
per lineam
parallelam ip
ſi .a.d. dictam
figuram re-
uolueret.
Et
ſi linea qua
dictum cen
trum trahi-
tur ab ipſo

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index