Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

#### Table of figures

< >
[Figure 311]
[Figure 312]
[Figure 313]
[Figure 314]
[Figure 315]
[Figure 316]
[Figure 317]
[Figure 318]
[Figure 319]
[Figure 320]
[Figure 321]
[Figure 322]
[Figure 323]
[Figure 324]
[Figure 325]
[Figure 326]
[Figure 327]
[Figure 328]
[Figure 329]
[Figure 330]
[Figure 331]
[Figure 332]
[Figure 333]
[Figure 334]
[Figure 335]
[Figure 336]
[Figure 337]
[Figure 338]
[Figure 339]
[Figure 340]
< >
page |< < (302) of 445 > >|
314302IO. BABPT. BENED.
ELIPSIM PROPOSITAM QVALITER
Illuſtri Uiro Franciſco Mendo Zzæ
QVod antea tuo nomine fecerat Marcus Antonius amicus noſter ſufficie-
bat.
Sed quia, quæ nunc à me petis, talia ſunt, vt ſine tripartita aequa-
liter
aliqua data proportione non poſſit aliquis exactè intentum perfice-
re, nihilominus, ſuppoſita di
cta diuiſione, reliqua facilia erunt.
Primum
enim eſt.
Propoſitam Ellipſim qua-
drare.
Sit igitur Ellipſis propoſita .a.b.d.c. cu-
ius axes ſint .a.b. et .d.c. dati, ſeu reperti ex
47. ſecundi Pergei, ſintque; duo circuli .a.e.
b.f.
et .g.d.h.c. circa eaſdem diametros,
tunc proportio .a.b. ad .d.c. dimidium erit
proportionis circulorum ex .2. 12. Eu-
clid.
ſed proportio .a.b. ad .d.c. æqualis
eſt proportioni maioris circuli ad Elli
pſim .ex .5. Archimedis in lib. de cono­
idalibus, quapropter proportio Elli-
pſis ad minorem circulum altera me-
dietas erit totius proportionis circulo-
rum, hoc eſt maioris ad minorem, qua
re Ellipſis media proportionalis erit
inter eos circulos.
Nunc verò cum
ex Archimede repertę fuerint duæ fi-
guræ rectilineæ æquales duobus circu
lis iam dictis, & inter has, reperta fue
rit alia media proportionalis propoſi-
tum obtinebimus.
Spheroidem propoſitam cubare.