Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (61) of 445 > >|
7361THEOR. ARITH. n.k. ipſius quadratum numerorum integrorum cognoſcetur, cui addito gnomone .
n.o.K.
cognoſcemus numerum .u.i. quæſitum.
Sed cum nobis hæc via, tenenda propoſitum non fuit, hoc eſt primo loco inue
niendi quadrati minoris .n.K. ideo ſupereſt probandum gnomonem .t.o.c. vnitati ae-
qualem
eſſe, nempe quadratulo .m.a. quod patebit, ſi conſideremus nos ſumpſiſſe
rectangulum .r.c. pro dimidio gnomonis .n.o.K.
etenim ſi ſupplemento etiam .n.r. qua
dratulum æquale .m.a. adderetur, pateret gnomonem .n.a.K. cum dicto quadratulo
collectum, æqualem eſſe gnomoni .n.o.K: cum duo ſupplementa .m.t. et .m.c. inter ſe
fint æqualia.
Quamobrem inuento quadrato .t.c. ex dimidio gnomonis cognito,
additur vnitas, gnomon ſcilicet .t.o.c. ex quo cognoſcitur numerus .u.i. quæſitus.
Quod autem quadratum .g.p. numeris integris conſtet, hac ratione probatur viſum
enim fuit ſupra quadratum .n.K. verè quadratum eſſe, & numeris integris conſtare,
pariter etiam .t.c. ſeque; mutuo conſequi (nam .K.c. eſt vnitas linearis) ex quo gnomon
n.a.K. numero diſpari conſtabit, ex ijs quæ .90. theoremate probata fuerunt.
Itaque;
ex eodem theoremate neceſſe eſt gnomonem .t.d.c. etiam numero diſpari conſtare,
ita vt à numero .n.a.K. non niſi duabus vnitatibus differat, nempe vt .c.p. ſit vnitas li-
nearis, ſed ita reuera eſt, numerus enim .u.d.i. ex præſuppoſito par eſt,
quare nume
rus .t.d.c. diſpar erit, cum alterum vnitate ſuperet, videlicet gnomone .t.o.c. vnita
ri æquali, tum .n.a.K. minor eſt .n.o.K. ex eodem gnomone .t.o.c. unitati æquali.
Ita
que .n.a.K. minor erit .u.d.i. per vnitatem, & minor .t.d.c. per duas unitates, ex quo ſe-
quitur .g.p. eſſe quadratum integrorum ex dicto theoremate ac con ſequens quadrato
t.c.
quare .c.p. vnitas erit, & radices .q.K. et .q.p. horum quadratorum numero bina-
rio inter ſe different.
Vnà etiam ſcienda eſt cauſa, cur numerus propoſitus neceſſa
102[Figure 102] riò binario maior eſſe debeat.
Etenim cum ipſe
ſit futurus gnomon .n.o.K. nec poſſit minor eſſe
numero ternario, vt patet ex .90. theoremate,
idcirco ſequitur neceſſariò maiorem eſſe bina-
rio debere.
Quòd ſi diſpar numerus propone-
retur, nec forma operis nec ſpeculationis mutan-
da
eſſet.
Non erit tamen neceſſarium vt ipſa
quadrata .n.K. et .g.p. numeris integris conſta-
rent.
Sæpius enim fractis componerentur, quod
ex .90. theoremate facile erit ſpeculari nihilo-
minus fractis integris, ipſisque; collectis cum ſuis
fractis ſummæ eſſent quadratæ.
THEOREMA XCIII.
CVR propoſitis duobus numeris altero pari, altero verò diſpari, duplo primi
minore per vnitatem, ſi alium inuenire numerum voluerimus, cui alterum iſto
rum coniunctum proferat quadratum, & altero detracto, quadratum ſuperſit.
Re-
ctè datos numeros in ſummam colligemus, quam ſummam in duas quam maximas
poterimus partes diuidemus, quarum vna pari, altera diſpari conſtet, tum vtran-
que in ſeipſam multiplicabimus, & quadrato minori, duorum numerorum propo-
ſitorum quemuis ademus, ex quo cupimus nobis quadratum minus ſupereſſe, & pro
ueniet nobis numerum quæſitum.
Exempli gtatia, proponuntur numeri .11. et .6. quorum alter alicui numero ad-

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index