Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < (28) of 445 > >|
4028IO. BAPT. BENED. quadrato dimidij, prout ex ſpeculatione huiuſmodi operis cognoſcetur, cuiæquanda
eſt differentia inter ſummam quadratorum duorum qui quæruntur numerorum, ſimul cum pro
ducto eorum radicum.
Dimidium numeri .20. in ſeipſum multiplicandum eſſet, qua-
dratumque; detrahendum ex .208. vtremanerent .108. quorum .108. tertiæ partis qua
drata radix eſſet .6. quæ ſi iuncta fuerit dimidio .20. nempe .10. daretur maior nu-
merus quæſitus .16. quo detracto è .20. darentur .4.
Cuius ſpeculationis cauſa, datus primus numerus ſignificetur linea .g.h. in qua
maior numerus incognitus ſit .g.h. minor verò .b.h. quorum quadrata ſint .y.t. et .
b.l.
in quadrato maximo .g.p. tum productum .g.b. in .b.h. ſit .g.c. cogitenturque; duo
diametri .q.h. et .g.p. diuiſi per medium in puncto .o. per quod duę lineæ ducan-
tur .f.d. et .k.m. parallelæ lateribus maximi quadrati.
Hæ dictum quadratum in
quatuor quadrata æqualia diuident, quorum vnumquodque;, æquale erit quadrato .
g.f.
dimidij ipſius .g.h. datę,
quare eorum vnumquodque; cognitum erit. Iterum co
gitemus .s.x. per .e. parallelam .g.k. tantum diſtan-
tem à .g.k. quantum .y.l. ab .g.h. diſtare inueni-
55[Figure 55] tur.
Cogitetur pariter .z.i.a. per punctum .i.
parallela .d.p.
quare .a.t. æqualis erit .f.c. et .y.x.
æqualis .f.e. et .y.s: b.l. æqualis.
Ita ſubtractis è
duobus quadratis ſuperius dictis .a.t.y.x. et .b.l.
producto .y.b. æqualibus, ſupererunt .k.d. et .a.c.
x.
cognita, tanquam æqualia dato ſecundo nu-
mero, ſed .k.d. quadratum eſt medietatis .g.f.
cognitæ, cognoſcetur igitur reſiduum .a.c.x. vnà
etiam ſingulæ tertiæ partes nempe quadrata .o.
i.o.c.
et .o.e. & radix .b.f. vel .f.s. ſingularum,
qua coniuncta dimidio .g.f. rurfusque; ab eodem de-
tracta, propoſitum conſequemur.
THEOREMA XLIIII.
CVR ſi quis cupiat numerum propoſitum in duas eiuſmodi partes diuidere, vt
quadratum maioris, quadratum minoris ſuperet quantitate alterius numeri
propoſiti, rectè primum numerum in ſeipſum multiplicabit, & ab eodem ſecun-
dum numerum detrahet, reſiduum verò per duplum primi diuidet, ex quo proue-
niens primi pars minor erit, quæ ex illo primo detracta, partem maiorem
proferet.
Exempli gratia, ſi proponantur .20. diuiſa in duas eiuſmodi partes, vt quadratum
maioris ſuperet quadratum minoris numero æquali ipſi .240. oportebit primum
numerum, qui quadratus cum fuerit, erit .400. in ſeipſum multiplicare, & ex hoc
quadrato ſecundum numerum nempe .240. detrahere,
tunc remanebunt .160. quę
diuiſa per .40. numerum duplum primo, dabuntur quatuor pro minori numero, à reſi-
duo verò .20. detractis quatuor, erunt .16. pro maiorinumero.
Quod vt exactè conſideremus, primus numerus propoſitus ſignificetur linea .q.
h.
diuidendus in duas partes .q.p. et .p.h. tales quales quærimus.
Poſtmodum eriga
2r quadratum .q.e. diuiſum diametro .f.h. ductisque; .p.o.t. et .a.o.c. parallelis lateri-
bus quadrati, dabuntur imaginaria quadrata .c.t. et .p.a. duarum partium .q.p. et .p.
h.
incognitarum.
Ad hæc cogitemus quadratum .u.n. æquale quadrato .p.a. è quadra­

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index