Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

#### Table of figures

< >
[Figure 401]
[Figure 402]
[Figure 403]
[Figure 404]
[Figure 405]
[Figure 406]
[Figure 407]
[Figure 408]
[Figure 409]
[Figure 410]
[Figure 411]
[Figure 412]
[Figure 413]
[Figure 414]
[Figure 415]
[Figure 416]
[Figure 417]
[Figure 418]
[Figure 419]
[Figure 420]
[Figure 421]
[Figure 422]
[Figure 423]
[Figure 424]
[Figure 425]
[Figure 426]
[Figure 427]
[Figure 428]
[Figure 429]
[Figure 430]
< >
page |< < (395) of 445 > >|
407395EPISTOL AE.
Habemus igitur nuncomnems illas conditiones quas Archimedes in præcedenti
propoſitione ſupponit.
Vnde ex rationibus ibi allegatis ſequitur .f.r. eſſe duas quin-
tas ipſius .m.n. hoc eſt ipſius .f.b.
Quapropter punctum .r. centrum erit ponderis to-
tius ſectionis parabolæ ex .8. ſecundi lib. de ponderibus eiuſdem Archimedis.
Inquit nunc Archimedes, quod exiſtente .q. centro ponderis ipſius parabolæ .d.
b.e.
partialis, centrum fruſti erit in linea recta .q.r.f. ita remotum à centro .r. quod
proportio .q.r. ad partem illam ipſius .r.f. quæ reperitur inter centrum .r. & centrum
huius fruſti æqualis eſt proportioni totius parabolæ ad partialem.
Quod quidem ve
rum eſt ex .8. primi libri eiuſdem.
Inquit etiam punctum .i. illud eſſe, eo quod cum probatum ſit .f.r. duas quintas eſ-
ſe ipſius .f.b. ideo .b.r. tres quintas erit ipſius .b.f. vt ipſe dicit.
443[Figure 443]