Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

#### Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < (46) of 445 > >|
5846IO. BAPT. BENED. g.m. cogiteturque; rectangulum .y.x. & rectangulum .k.x. Itaque dabitur eadem pro
g.
quæ .b.a. ad .a.o. ſed ex prima ſexti aut .18. vel .19. ſeptimi, ſic ſe habet rectangu-
quare ſicut .b.a. ad .o.e. ex .11. quinti, & eiuſdem
Quare
ex communi ſcientia, ſic ſe habebit duplum rectanguli .k.y. ad ſummam .y.x. cum .
k.x.
rectangulorum, ſicut duplum .b.a. ad ſummam .a.o.e. et proportio ſummæ re-
ctangulorum .y.x. et .k.x. duplo .g.m. ſicut duplum .b.a. ad .a.o.e.
Igitur ſumma duo-
rum rectangulorum .y.x. et .x.k. media proportionalis erit inter duplum rectanguli .
k.y.
& duplum vnitatis ſuperſicialis .g.m.
Nunc terminetur rectangulum .a.r. ex quo
bus notatis, ſexti aut ſeptimi.
Quare etiam ſicut dupli rectanguli .k.y. ad ſummam
rectangulorum .y.x. et .k.x.
Iam verò ſi conſtituatur .e.c. pro vnitate lineari ipſius .
e.r.
certi erimus numerum .a.c. æqualem eſſe .a.e. & proportionem .r.e. ad .e.c. hoc
eſt .a.r. ad .a.c. eandem quæ .y.x. et .x.k. rectangulorum ad .m.g. ex prædictis rationi-
bus, & ex hypotheſi, nempe quòd .
e.r.
æqualis ſit numero .k.m.y.
hoc eſt rectangulorum .y.x. et .x.
k
.
Quamobrem .a.r. ex communi
ſcientia medium proportionale erit
inter duplum .a.s. & duplum .a.c. ea­
demque;
duplum .a.c. ex æqualitate propor-
erit qùæ proportio dupli rectangu-
li .k.y. ad duplum .m.g. hoc eſt .a.s.
ſimplicis ad ſimplicem .a.c. quæ ſim
vnitatem .g.m. ſic enim ſe habet ſim
duplum.
Sed pariter ita ſe habet .a.s. ad .a. c. cogitato .a.c. tamquam proueniente
ex diuiſione .a.s. per rectangulum .k.y. vt conſtitutum eſt, ſicut .k.y. ad .m.g. ex defi-
nitione diuiſionis vt iam dictum eſt,
quare numerus .a.c. æqualis erit numero .a.o.e.
THEOREMA LXXI.
CVR propoſitis .4. numeris, duobus nempe diuidentibus ac duobus diuiden-
dis, ſi adinuicem diuiſi fuerint, duoque; prouenientia inuicem multiplicata quenuis nu
merum producant, qui ſeruetur, ſi deinde ijdem numeri verſa vice mutuo diuiſi fue
rint, & inter ſe multiplicata prouenientia, productum hoc, primo ſeruato numero
æquale erit.
Exempli gratia propoſitis his .4. numeris .20. 30. 5. 10. duo autem .20. ſcilicet
et .30. ſint numeri diuidendi, porrò .5. et .10. numeri diuidentes, nempe vt primo .20
per .5. diuidatur, tum .30. per .10. producetur .4. et .3. qui ſimul multiplicati proferent .
12.
tum .20. per .10. d iuiſo et .30. per .5. prouenientia erunt .2. 6. quæ inter ſe multi-
plicata producent etiam .12.