Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure: Compositorum]
[162. Figure: Simpricium]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure: SVPERFICIALIS.]
< >
page |< < (97) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div274" type="math:theorem" level="3" n="143">
              <p>
                <s xml:id="echoid-s1262" xml:space="preserve">
                  <pb o="97" rhead="THEOREM. ARIT." n="109" file="0109" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0109"/>
                nem
                  <var>.c.d.</var>
                ad
                  <var>.d.e.</var>
                ſi
                  <var>.c.d.</var>
                accipiemus, vt medium inter
                  <var>.a.d.</var>
                et
                  <var>.d.e.</var>
                cognoſcemus etiam
                  <lb/>
                proportionem
                  <var>.a.d.</var>
                ad
                  <var>.d.e.</var>
                </s>
                <s xml:id="echoid-s1263" xml:space="preserve">quare etiam eam quæ
                  <var>.a.e.</var>
                ad
                  <var>.d.e.</var>
                collocando poſteà.
                  <lb/>
                  <var>d.e.</var>
                inter
                  <var>.e.f.</var>
                et
                  <var>.a.e.</var>
                innoteſcet ea, quæ eſt
                  <var>.a.e.</var>
                ad
                  <var>.e.f.</var>
                & ita gradatim accedenrus ad
                  <lb/>
                perfectam cognitionem proportionis totius
                  <var>.a.l.</var>
                ad
                  <var>.k.l</var>
                . </s>
                <s xml:id="echoid-s1264" xml:space="preserve">Nunc autem mediante
                  <var>.k.l.</var>
                  <lb/>
                cognoſcemus proportionem totius
                  <var>.a.l.</var>
                ad
                  <var>.i.k.</var>
                & hac mediante, cam cognoſcemus,
                  <lb/>
                quæ totius
                  <var>.a.l.</var>
                ad
                  <var>.g.h.</var>
                & hac mediante eam quæ totius
                  <var>.a.l.</var>
                ad
                  <var>.f.g.</var>
                & ſic gradatim, co
                  <lb/>
                gnita nobis erit proportio totius
                  <lb/>
                lineæ
                  <var>.a.l.</var>
                ad ſuam partem
                  <var>.a.c.</var>
                be-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0109-01a" xlink:href="fig-0109-01"/>
                neficio poſteà totius lineæ
                  <var>.a.l.</var>
                co
                  <lb/>
                gnoſcemus proportionem
                  <var>a.c.</var>
                ad
                  <lb/>
                  <var>a.b.</var>
                & ſic aliarum reſpectu lineæ
                  <var>.a.b.</var>
                vt quærebatur, quæ quidem propoſitio, etſi car
                  <lb/>
                danica uocetur leuiſſima tamen eſt.</s>
              </p>
              <div xml:id="echoid-div274" type="float" level="4" n="1">
                <figure xlink:label="fig-0109-01" xlink:href="fig-0109-01a">
                  <image file="0109-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0109-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div276" type="math:theorem" level="3" n="144">
              <head xml:id="echoid-head163" xml:space="preserve">THEOREMA
                <num value="144">CXLIIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s1265" xml:space="preserve">QVamuis multi de modo in ſumma colligendi, ſubtrahendi,
                  <reg norm="multiplicandi" type="context">multiplicãdi</reg>
                , & di
                  <lb/>
                uidendi proportiones ſcripſerint, nullus tamen (quod ſciam) perfectè, ac
                  <lb/>
                ſcientificè ſpeculatus eſt has operationes, quapropter hanc rem cum ſilentio tranſi
                  <lb/>
                re nolui, quin aliquid de ipſa conſcribam à ſumma dictarum proportionum in-
                  <lb/>
                cohando.</s>
              </p>
              <p>
                <s xml:id="echoid-s1266" xml:space="preserve">Quotieſcunque igitur volunt duas proportiones inuicem aggregare, ſimul ea-
                  <lb/>
                rum antecedentia multiplicant, & ſimiliter earum conſequentia. </s>
                <s xml:id="echoid-s1267" xml:space="preserve">Tunc proportio
                  <lb/>
                terminata ab illis productis euadit in ſummam illarum duarum propoſitarum
                  <lb/>
                proportionum.</s>
              </p>
              <p>
                <s xml:id="echoid-s1268" xml:space="preserve">Vt exempli gratia, ſi voluerimus colligere proportionem ſeſquialteram cum ſeſ-
                  <lb/>
                quitertia, multiplicando .3. cum .4. antecedentia ſcilicet, pro ductum erit .12. poſteà
                  <lb/>
                multiplicando .2. cum .3. conſequentia, tunc productum erit .6. </s>
                <s xml:id="echoid-s1269" xml:space="preserve">Proportio igitur,
                  <lb/>
                quæ inter .12. et .6. reperitur. (quæ dupla eſt) eſt ſumma propoſitarum
                  <reg norm="proportionum" type="context">proportionũ</reg>
                .</s>
              </p>
              <p>
                <s xml:id="echoid-s1270" xml:space="preserve">Cuius rei ſpeculatio erit huiuſmodi ſint
                  <var>.x.</var>
                et
                  <var>.u.</var>
                  <lb/>
                duo antecedentia quarunruis proportionum
                  <var>.t.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0109-02a" xlink:href="fig-0109-02"/>
                verò et. n ſint eorum conſequentia, productum
                  <lb/>
                autem antecedentium ſit
                  <var>.a.g.</var>
                illud verò quod
                  <reg norm="con" type="context">cõ</reg>
                  <lb/>
                ſequentium ſit
                  <var>.d.a.</var>
                vnde proportio
                  <var>.a.g.</var>
                ad
                  <var>.a.d.</var>
                  <lb/>
                compoſita erit ex proportione
                  <var>.x.</var>
                ad
                  <var>.t.</var>
                & ex ea,
                  <lb/>
                quæ eſt
                  <var>.u.</var>
                ad
                  <var>.n.</var>
                per .24. ſexti vel quintam octaui.
                  <lb/>
                </s>
                <s xml:id="echoid-s1271" xml:space="preserve">Patet igitur ratio rectè faciendi, vt ſuprà dictum
                  <lb/>
                eſt.</s>
              </p>
              <div xml:id="echoid-div276" type="float" level="4" n="1">
                <figure xlink:label="fig-0109-02" xlink:href="fig-0109-02a">
                  <image file="0109-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0109-02"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div278" type="math:theorem" level="3" n="145">
              <head xml:id="echoid-head164" xml:space="preserve">THEOREMA
                <num value="145">CXLV</num>
              .</head>
              <p>
                <s xml:id="echoid-s1272" xml:space="preserve">QVotieſcunque deinde detrahere volunt vnam proportionem ex altera mul-
                  <lb/>
                tiplicant antecedens vnius cum conſequenti alterius. </s>
                <s xml:id="echoid-s1273" xml:space="preserve">Tunc proportio, quę
                  <lb/>
                inter talia duo producta incluſa reperitur, eſt reſiduum, ſeu differentia illarum dua-
                  <lb/>
                rum proportionum datarum.</s>
              </p>
              <p>
                <s xml:id="echoid-s1274" xml:space="preserve">Vt exempli gratia, ſi aliquis vellet ex proportione dupla detrahere ſeſquialte-
                  <lb/>
                ram, multiplicaret .2. antecedens duplæ cum .2. conſequenti ſeſquialteræ, quorum
                  <lb/>
                productum eſſet .4. pro antecedenti reſiduę proportionis. </s>
                <s xml:id="echoid-s1275" xml:space="preserve">Deinde multiplicaret .3
                  <lb/>
                antecedens ſeſquialteræ cum .1. conſequenti duplæ, & productum eſſet .3. pro
                  <reg norm="con- ſequenti" type="context">cõ- </reg>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>