Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[151. Figure]
[152. Figure]
[153. Figure]
[154. Figure]
[155. Figure]
[156. Figure]
[157. Figure]
[158. Figure]
[159. Figure]
[160. Figure]
[161. Figure: Compositorum]
[162. Figure: Simpricium]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure: SVPERFICIALIS.]
< >
page |< < (110) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div293" type="appendix" level="3" n="1">
              <pb o="110" rhead="IO. BAPT. BENED." n="122" file="0122" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0122"/>
              <p>
                <s xml:id="echoid-s1400" xml:space="preserve">DEmpto poſteà quo volueris horum altero productorum ex maximo,
                  <reg norm="diuiſoque" type="simple">diuiſoq́;</reg>
                  <lb/>
                reliquo per differentiam conſequentium, ipſi diametraliter oppoſitam, pro
                  <lb/>
                ueniet tibi numerus antecedens
                  <reg norm="correſpondensque" type="simple">correſpondensq́;</reg>
                illi.</s>
              </p>
              <p>
                <s xml:id="echoid-s1401" xml:space="preserve">Animaduertendum tamen eſt, quòd ſi in figura à me ita ordinata, ſumma ſim-
                  <lb/>
                plex propoſita medium locum occuparet, vt in figura
                  <var>.D.</var>
                arithmetica videri poteſt;
                  <lb/>
                </s>
                <s xml:id="echoid-s1402" xml:space="preserve">tunc vt habeatur eius productum, addenda ſimul erunt circunſtantia producta .eo
                  <lb/>
                  <reg norm="quod" type="simple">ꝙ</reg>
                eius ſecundum latus eſſet antecedens medio loco conſtitutum, & prima pars
                  <reg norm="quae- ſita" type="simple">quę-
                    <lb/>
                  ſita</reg>
                numeri propoſiti: </s>
                <s xml:id="echoid-s1403" xml:space="preserve">in qua figura
                  <var>.D.</var>
                manifeſtè patet ratio, quare colligendi ſint
                  <lb/>
                tam errores, quam producta, dum eorum alterum eſt plus, reliquum verò minus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1404" xml:space="preserve">Speculatio figurę
                  <var>.D.</var>
                arithmeticę videbitur in figura
                  <var>.D.</var>
                geometrica, eodem fe
                  <lb/>
                rè modo quo fecimus in figuris
                  <var>.C.</var>
                mutatis mutandis, reſpectu ipſius plus, & minus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1405" xml:space="preserve">Collectio namque
                  <reg norm="errorum" type="context">errorũ</reg>
                ſimiliter accidentalis eſt, eo quod eſſentialis numerus
                  <lb/>
                diuiſor per ſe, eſt maxima differentia ſummarum ſimplicium, vt in dicta figura
                  <var>.D.</var>
                  <lb/>
                cerni poteſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s1406" xml:space="preserve">Sed vt ſuperius dixi, nunc etiam repeto, quòd rectè hoc loco multiplicabatur
                  <lb/>
                ſumma ſimplex propoſita, cum prima par
                  <lb/>
                te primę poſitionis, vt productum diuide
                  <lb/>
                retur per primam ſimplicem ſummam,
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0122-01a" xlink:href="fig-0122-01"/>
                vnde proueniret nobis pars prima
                  <reg norm="quaeſi- ta" type="simple">quęſi-
                    <lb/>
                  ta</reg>
                noſtri numeri propoſiti, ex regula de
                  <lb/>
                tribus, vnica poſitione.</s>
              </p>
              <div xml:id="echoid-div298" type="float" level="4" n="6">
                <figure xlink:label="fig-0122-01" xlink:href="fig-0122-01a">
                  <image file="0122-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0122-01"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s1407" xml:space="preserve">Vt exempli gratia, datus numerus diui
                  <lb/>
                dendus ſit .100. in quinque partes, tales
                  <lb/>
                verò,
                  <reg norm="quod" type="simple">ꝙ</reg>
                ſecunda duplo maior ſit prima
                  <lb/>
                cum .2. ſimul, tertia autem æqualis ſit pri-
                  <lb/>
                mæ & ſecundæ cum .3. vnitatibus iunctis,
                  <lb/>
                quarta poſteà maior ſit prima ſecunda, &
                  <lb/>
                tertia per .4. vnitates, quinta demum ſu-
                  <lb/>
                peret reliquas omnes per quinque vnita
                  <lb/>
                tes, vt in figura
                  <var>.E.</var>
                videre eſt, quæ quidem
                  <lb/>
                partes compoſitæ (ſumpta vnitate pro
                  <lb/>
                prima) ita diſpoſitæ erunt .1. 4. 8. 17. 35.
                  <lb/>
                quarum ſumma erit .65. ſimplices autem
                  <lb/>
                cum diſpoſitæ fuerint erunt .1. 2. 3. 6. 12.
                  <lb/>
                quarum ſumma erit .24. dempta igitur
                  <lb/>
                cum fuerit hæc ſimplex ſumma .24. à com
                  <lb/>
                poſita .65. reſiduum erit .41. hoc eſt ſum-
                  <lb/>
                ma numerorum propoſitorum cum ſuis
                  <lb/>
                iterationibus in ipſis partibus, quod cum
                  <lb/>
                per ſe clariſſimum ſit, ſuperſluum eſt
                  <reg norm="ipsam" type="context">ipsã</reg>
                  <lb/>
                ſummam annatomizare per ſingulas par-
                  <lb/>
                tes, niſi quis habuerit eius cerebrum à fi-
                  <lb/>
                gura Omega
                  <reg norm="terminatum" type="context">terminatũ</reg>
                , cui tamen poſ-
                  <lb/>
                ſemus dicere dictam ſummam .41. in .4.
                  <lb/>
                partes diuidi, cuius prima eſſet .2. pro ad
                  <lb/>
                ditione ad
                  <reg norm="ſecundam" type="context">ſecũdam</reg>
                partem ſimplicium, </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>