Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[161. Figure: Compositorum]
[162. Figure: Simpricium]
[163. Figure]
[164. Figure]
[165. Figure]
[166. Figure]
[167. Figure]
[168. Figure]
[169. Figure]
[170. Figure]
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure: SVPERFICIALIS.]
[181. Figure: CORPOREA.]
[182. Figure: SVPERFICIALIS.]
[183. Figure: SVPERFICIALIS.]
[184. Figure: CORPOREA.]
[185. Figure: SVPERFICIALIS.]
[186. Figure: CORPOREA.]
[187. Figure: SVPERFICIALIS.]
[188. Figure: CORPOREA.]
[189. Figure: SVPERFICIALIS.]
[190. Figure]
< >
page |< < (115) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div293" type="appendix" level="3" n="1">
              <p>
                <s xml:id="echoid-s1456" xml:space="preserve">
                  <pb o="115" rhead="THEOREM. ARIT." n="127" file="0127" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0127"/>
                ſed exceſſus quartæ ſupra tertiam eſt .10. vnde ſupra ſecundam erit .18. & ſupra pri-
                  <lb/>
                mam erit .24. quæ omnia ſimul addita erunt .44. & in qualibet harum trium remane-
                  <lb/>
                bit una pars æqualis primæ quantitati, </s>
                <s xml:id="echoid-s1457" xml:space="preserve">quare ſi ex .96. detractus fuerit numerus .44.
                  <lb/>
                reliquus 52. erit quadruplus primæ, </s>
                <s xml:id="echoid-s1458" xml:space="preserve">quare prima pars valebit .13. ſecunda .19. ter-
                  <lb/>
                tia .27. & quarta .37. quarum omnium ſumma eſt .96.</s>
              </p>
              <div xml:id="echoid-div302" type="float" level="4" n="10">
                <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a">
                  <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0126-01"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s1459" xml:space="preserve">EX poſitionibus autem Tartaleæ in noſtra figura
                  <var>.K.</var>
                digeſtis, videre poſſumus
                  <lb/>
                quo pacto
                  <reg norm="colligantur" type="context">colligãtur</reg>
                huiuſ
                  <lb/>
                modi
                  <reg norm="conſequentes" type="context">conſequẽtes</reg>
                numeri ſimpli-
                  <lb/>
                ces .36. et .52. more figuræ
                  <var>.E.</var>
                quia
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0127-01a" xlink:href="fig-0127-01"/>
                colliguntur primò partes compoſi
                  <lb/>
                tæ .9. 15. 23. 33. ex quarum ſumma
                  <lb/>
                80. ſubtrahitur .36. ſumma ſim-
                  <lb/>
                plex ex ſimplicibus partibus .9. 9.
                  <lb/>
                9. 9. &
                  <reg norm="reſiduum" type="context">reſiduũ</reg>
                quod eſt .44. ſubdu
                  <lb/>
                citur ex .96. ſumma compoſita &
                  <lb/>
                propoſita, vnde remanet .52. pro
                  <lb/>
                ſumma ſimplici, ex numero dato,
                  <lb/>
                cuius proportio ad .13. eadem eſt
                  <lb/>
                quæ .36 ad .9. & proptereà ſuper-
                  <lb/>
                flua eſt ſecunda poſitio,
                  <reg norm="quando" type="context">quãdo</reg>
                ſci
                  <lb/>
                mus inuenire tales duos numeros
                  <lb/>
                conſequentes, vt in hoc exemplo
                  <lb/>
                ſunt .36. et .52. quia ex regula de
                  <lb/>
                tribus poſteà elicitur veritas quæ-
                  <lb/>
                ſita. </s>
                <s xml:id="echoid-s1460" xml:space="preserve">
                  <reg norm="Idem" type="context">Idẽ</reg>
                dico de 33. problemate.</s>
              </p>
              <div xml:id="echoid-div303" type="float" level="4" n="11">
                <figure xlink:label="fig-0127-01" xlink:href="fig-0127-01a">
                  <image file="0127-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0127-01"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s1461" xml:space="preserve">PRO quo .33. problemate acci
                  <lb/>
                piantur poſitiones primi
                  <reg norm="exem" type="context">exẽ</reg>
                  <lb/>
                pli Tonſtalli hoc eſt .33. et .31. vt in figuris hic ſubiectis
                  <var>.P.Q.</var>
                facile quis poteſt vi-
                  <lb/>
                dere, vbi in figura P. videbit nume-
                  <lb/>
                ros compoſitos, in figura verò
                  <var>.Q.</var>
                cer
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0127-02a" xlink:href="fig-0127-02"/>
                net numeros ſimplices, à quibus pro
                  <lb/>
                ueniunt rationes per ſe huiaſmodi
                  <lb/>
                operationis, in figura autem
                  <var>.R.</var>
                vide
                  <lb/>
                bitur meus ordo, & iſtæ tres figuræ ſi
                  <lb/>
                miles
                  <reg norm="erunt" type="context">erũt</reg>
                tribus illis primis
                  <var>.A.B.C.</var>
                  <lb/>
                ita quòd cum quis illas intellexerit, il
                  <lb/>
                lico etiam iſtas cognoſcet, vbi
                  <reg norm="etiam" type="context">etiã</reg>
                  <lb/>
                videbit quam confusè
                  <reg norm="ratiocinentur" type="context">ratiocinẽtur</reg>
                ij
                  <lb/>
                qui ignorant hunc meum ordinem
                  <lb/>
                ſimplicium
                  <reg norm="numerorum" type="context">numerorũ</reg>
                , à quibus fluit
                  <lb/>
                tota ratio (vt ſupra dixi) huiuſcemo
                  <lb/>
                di operationis.</s>
              </p>
              <div xml:id="echoid-div304" type="float" level="4" n="12">
                <figure xlink:label="fig-0127-02" xlink:href="fig-0127-02a">
                  <image file="0127-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0127-02"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>