Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[221. Figure]
[222. Figure]
[223. Figure]
[224. Figure]
[225. Figure]
[226. Figure]
[227. Figure]
[228. Figure]
[229. Figure]
[230. Figure]
[231. Figure]
[232. Figure]
[233. Figure]
[234. Figure]
[235. Figure]
[236. Figure]
[237. Figure]
[238. Figure]
[239. Figure]
[240. Figure]
[241. Figure]
[242. Figure]
[243. Figure]
[244. Figure]
[245. Figure]
[246. Figure]
[247. Figure]
[248. Figure]
[249. Figure]
[250. Figure]
< >
page |< < (159) of 445 > >|
DE MECHAN.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div367" type="section" level="3" n="14">
              <pb o="159" rhead="DE MECHAN." n="171" file="0171" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0171"/>
              <p>
                <s xml:id="echoid-s1896" xml:space="preserve">Super hac tertia ſpecie formari poteſt problema, vnde fiat, vt quieſcens huiuſ-
                  <lb/>
                modi rota parallela orizonti ſuper vnum punctum, & quantò fieri poteſt exiſtens
                  <reg norm="ae- qualis" type="simple">ę-
                    <lb/>
                  qualis</reg>
                , ſi eam circunuoluamus maiore qua poterimus ui, &
                  <reg norm="eandem" type="context">eãdem</reg>
                poſtea dimitten-
                  <lb/>
                tes non perpetuò circunuoluatur.</s>
              </p>
              <p>
                <s xml:id="echoid-s1897" xml:space="preserve">Hoc quidem, quatuor fit ob cauſas. quarum prima eſt, quia huiuſmodi motus, eius
                  <lb/>
                rotæ non ſit naturalis. </s>
                <s xml:id="echoid-s1898" xml:space="preserve">ſecunda eſt, quia etiamſi rota ſuper punctum mathematicum
                  <lb/>
                quieſceret, oporteret tamen vt ſuperius
                  <reg norm="alterum" type="context">alterũ</reg>
                haberet polum, qui ipſam
                  <reg norm="orizontalem" type="context">orizontalẽ</reg>
                  <lb/>
                teneret, qui quidem munimento aliquo corporeo indigeret; </s>
                <s xml:id="echoid-s1899" xml:space="preserve">vnde fricatio quędam
                  <lb/>
                conſequeretur, ex qua reſiſtentia prodiret.</s>
              </p>
              <p>
                <s xml:id="echoid-s1900" xml:space="preserve">Tertia eſt, quia aer contiguus eam perpetuò aſtringit,
                  <reg norm="hocque" type="simple">hocq́;</reg>
                modo eius motui
                  <lb/>
                reſiſtit.</s>
              </p>
              <p>
                <s xml:id="echoid-s1901" xml:space="preserve">Quarta eſt, quia quęlibet pars corporea, quę à ſe mouetur, impetu eidem à quali-
                  <lb/>
                bet extrinſeca virtute mouente impręſſo, habet naturalem inclinationem ad rectum
                  <lb/>
                iter, non autem curuum, vnde ſi à dicta rota particula aliqua ſuę circunferentiæ
                  <reg norm="diſium" type="context">diſiũ</reg>
                  <lb/>
                geretur, abſque dubio per aliquod temporis ſpatium pars ſeparata recto itinere fer
                  <lb/>
                retur per aerem, vt exemplo à fundis, quibus iaciuntur lapides, ſumpto, cognoſce
                  <lb/>
                re poſsumus, in quibus, impetus motus impręſſus naturali quadam propenſione
                  <lb/>
                rectum iter peragit, cum euibratus lapis, per lineam rectam contiguam giro, quem
                  <lb/>
                primo faciebat, in puncto, in quo dimiſſus fuit, rectum iter inſtituat, vt rationi con-
                  <lb/>
                ſentaneum eſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s1902" xml:space="preserve">Eadem, quoque ratione fit, vt quantò maior eſt aliqua rota, tantò maiorem quo
                  <lb/>
                que impetum, & impreſſionem motus eius circunferentiæ partesrecipiant, vnde
                  <reg norm="ſae­ pe" type="simple">ſę­
                    <lb/>
                  pe</reg>
                euenit, vt dum eam ſiſtere volumus, id
                  <reg norm="cum" type="context">cũ</reg>
                labore & cum diſſicultate agamus ; </s>
                <s xml:id="echoid-s1903" xml:space="preserve">quia
                  <lb/>
                quantò maior eſt diameter vnius circuli, tantò minus curua eſt eiuſdem circunferen
                  <lb/>
                tia, & tantò propius accedit angulum eiuſdem circunferentiæ ad quantitatem duo-
                  <lb/>
                rum angulorum rectorum rectilineorum, ideſt circunferentia ad rectitudinem linea
                  <lb/>
                rem. </s>
                <s xml:id="echoid-s1904" xml:space="preserve">Vnde earundem partium dictæ circunferentiæ motus ad inclinationem ſibi à
                  <lb/>
                natura tributam, quæ eſt incedendi per lineam rectam, magis accedit.</s>
              </p>
            </div>
            <div xml:id="echoid-div371" type="section" level="3" n="15">
              <head xml:id="echoid-head222" style="it" xml:space="preserve">Quod Aristotelis ratio none queſtionis
                <lb/>
              admittendanon ſit.</head>
              <head xml:id="echoid-head223" xml:space="preserve">CAP. XV.</head>
              <p>
                <s xml:id="echoid-s1905" xml:space="preserve">VEra ratio nonæ quęſtionis à ſecunda parte decimi cap. huius tractatus, & non
                  <lb/>
                aliunde, accerſiri debet.</s>
              </p>
            </div>
            <div xml:id="echoid-div372" type="section" level="3" n="16">
              <head xml:id="echoid-head224" style="it" xml:space="preserve">Quod Aristotelis rationes de decima queſtione
                <lb/>
              ſint reijciende.</head>
              <head xml:id="echoid-head225" xml:space="preserve">CAP. XVI.</head>
              <p>
                <s xml:id="echoid-s1906" xml:space="preserve">ARiſtotelis rationes, vnde fiat, vt facilius moueantur libræ vacuæ, quàm plenè
                  <lb/>
                ad propoſitam diſputationem non pertinent; </s>
                <s xml:id="echoid-s1907" xml:space="preserve">quia ſemper ineunda eſt ratio
                  <lb/>
                proportionis virtutis mouentis ſuper mobile; </s>
                <s xml:id="echoid-s1908" xml:space="preserve">quod ipſe non fecit.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>