Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[171. Figure]
[172. Figure]
[173. Figure]
[174. Figure]
[175. Figure]
[176. Figure]
[177. Figure]
[178. Figure]
[179. Figure]
[180. Figure: SVPERFICIALIS.]
[181. Figure: CORPOREA.]
[182. Figure: SVPERFICIALIS.]
[183. Figure: SVPERFICIALIS.]
[184. Figure: CORPOREA.]
[185. Figure: SVPERFICIALIS.]
[186. Figure: CORPOREA.]
[187. Figure: SVPERFICIALIS.]
[188. Figure: CORPOREA.]
[189. Figure: SVPERFICIALIS.]
[190. Figure]
[191. Figure: CORPOREA.]
[192. Figure: SVPERFICIALIS.]
[193. Figure: SVPERFICIALIS]
[194. Figure]
[195. Figure]
[196. Figure]
[197. Figure]
[198. Figure]
[199. Figure]
[200. Figure]
< >
page |< < (167) of 445 > >|
DE MECHAN.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div383" type="section" level="3" n="22">
              <pb o="167" rhead="DE MECHAN." n="179" file="0179" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0179"/>
            </div>
            <div xml:id="echoid-div384" type="section" level="3" n="23">
              <head xml:id="echoid-head238" style="it" xml:space="preserve">De uer a cauſa .30. quæstionis.</head>
              <head xml:id="echoid-head239" xml:space="preserve">CAP.
                <sic comment="should be XXIII">XXIIII.</sic>
              </head>
              <p>
                <s xml:id="echoid-s1990" xml:space="preserve">VEra ratio, cur homo dum ſedet ( non tamen Turcarum more ) ſi velit
                  <lb/>
                ſeſe in pedes erigere, calcaneos retrahit, vt efficiat angulum acutum, cum
                  <reg norm="fae- moribus" type="simple">fę-
                    <lb/>
                  moribus</reg>
                coxis à parte inferiori, & ventrem inclinat, ad conſtituendum etiam angu
                  <lb/>
                lum acutum in ſuperiori parte, ea eſt; </s>
                <s xml:id="echoid-s1991" xml:space="preserve">vt totius corporis pondus, ex ęquo, ideſt ab
                  <lb/>
                oppoſitis partibus circundet lineam rectam, quæ tranſit per locum, in quo conquie
                  <lb/>
                ſcunt pedes verſus mundi centrum. </s>
                <s xml:id="echoid-s1992" xml:space="preserve">ideſt, ut edatur ęquilibrium ponderis ipſius cor-
                  <lb/>
                poris circum lineam illam, quę ſub pedibus inſeruit pro ſparto. </s>
                <s xml:id="echoid-s1993" xml:space="preserve">Vnde aperiendo,
                  <lb/>
                deinde dictos duos angulos circa dictam
                  <reg norm="lineam" type="context">lineã</reg>
                , abſque vlla difficultate erigitur cor-
                  <lb/>
                pus, & abſque periculo in alterutram partem cadendi.</s>
              </p>
            </div>
            <div xml:id="echoid-div385" type="section" level="3" n="24">
              <head xml:id="echoid-head240" style="it" xml:space="preserve">Deratione .35. & ultimæ quæstionis.</head>
              <head xml:id="echoid-head241" xml:space="preserve">CAP.
                <sic comment="should be XXIIII">XXV.</sic>
              </head>
              <p>
                <s xml:id="echoid-s1994" xml:space="preserve">VEra ratio, quare, quę reperiuntur in vorticibus aquarum, ſemper verſus
                  <lb/>
                medium ipſarum vertiginum vniuntur, inde promanat, quod media
                  <lb/>
                vertiginum ſemper depreſſiora ſunt. </s>
                <s xml:id="echoid-s1995" xml:space="preserve">vnde quòd dicta corpora ad medium acce-
                  <lb/>
                dant, nihil aliud eſt, quàm ipſa corpora ſuo pondere grauitateq́ue deſcendere, figu
                  <lb/>
                ra enim vorticibus eſt quaſi conica, & concaua cum angulo deorſum, & gyro baſis
                  <lb/>
                ſurſum. </s>
                <s xml:id="echoid-s1996" xml:space="preserve">Atque hæc vera eſt huius effectus cauſa, & non ea quam Ariſtoteles ponit,
                  <lb/>
                à
                  <unsure/>
                quo aliarum omnium quæſtionum, quas ego omiſi rationes ſunt benè propoſitæ.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>