Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[191. Figure: CORPOREA.]
[192. Figure: SVPERFICIALIS.]
[193. Figure: SVPERFICIALIS]
[194. Figure]
[195. Figure]
[196. Figure]
[197. Figure]
[198. Figure]
[199. Figure]
[200. Figure]
[201. Figure]
[202. Figure]
[203. Figure]
[204. Figure]
[205. Figure]
[206. Figure]
[207. Figure]
[208. Figure]
[209. Figure]
[210. Figure]
[211. Figure]
[212. Figure]
[213. Figure]
[214. Figure]
[215. Figure]
[216. Figure]
[217. Figure]
[218. Figure]
[219. Figure]
[220. Figure]
< >
page |< < (180) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div416" type="section" level="3" n="19">
              <p>
                <s xml:id="echoid-s2136" xml:space="preserve">
                  <pb o="180" rhead="IO. BAPT. BENED." n="192" file="0192" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0192"/>
                dicto corpori
                  <var>.Q</var>
                . </s>
                <s xml:id="echoid-s2137" xml:space="preserve">Nunquam remanſuram ſuam totalem grauitatem
                  <var>.a.b.</var>
                in quolibet
                  <lb/>
                ex-dictis medijs. </s>
                <s xml:id="echoid-s2138" xml:space="preserve">Nunc ſi quærat à me Ariſtoteles proportionem velocitatis corpo-
                  <lb/>
                ris
                  <var>.Q.</var>
                per vacuum ad velocitatem dicti corporis per plenum, ego ei proponam pro-
                  <lb/>
                portionem ipſius
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                exempli gratia, dicens,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <reg norm="quemadmodum" type="wordlist">quẽadmodum</reg>
                  <var>.a.b.</var>
                maius eſt
                  <lb/>
                ip ſo
                  <var>.a.e.</var>
                ſic etiam corpus
                  <var>.Q.</var>
                velocius erit in vacuo, quàm in pleno, dicti autem ple-
                  <lb/>
                ni denſitatem appellabimus
                  <var>.e.b</var>
                . </s>
                <s xml:id="echoid-s2139" xml:space="preserve">Ariſtoteles dicet nunc,
                  <reg norm="quod" type="simple">ꝙ</reg>
                aliud quoddam medium
                  <lb/>
                in eadem proportione ſubtilius ipſo
                  <var>.e.b.</var>
                deſumatur; </s>
                <s xml:id="echoid-s2140" xml:space="preserve">quemadmodum
                  <var>.a.e.</var>
                minus eſt
                  <lb/>
                ipſo
                  <var>.a.b.</var>
                ſit ergo iſtud
                  <var>.i.b.</var>
                in quo Ariſtoteles credit corpus Q. futurum tam velox ut
                  <lb/>
                in vacuo, in quo aberrat,
                  <reg norm="quia" type="simple">ꝗa</reg>
                proportio velocitatis corporis
                  <var>.Q.</var>
                in medio
                  <var>.i.b.</var>
                ad velo
                  <lb/>
                citatem eiuſdem in medio
                  <lb/>
                  <var>e.b.</var>
                ita ſe hàbebit, ut
                  <var>.i.a.</var>
                ad
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0192-01a" xlink:href="fig-0192-01"/>
                  <var>e.a.</var>
                ex ultimo ſuppoſito ca
                  <lb/>
                pit .2. huius libr. quæ minor
                  <lb/>
                eſſet ea, quæ eſt
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                ex .8. lib. quinti Eucli.</s>
              </p>
              <div xml:id="echoid-div416" type="float" level="4" n="1">
                <figure xlink:label="fig-0192-01" xlink:href="fig-0192-01a">
                  <image file="0192-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0192-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div418" type="section" level="3" n="20">
              <head xml:id="echoid-head281" style="it" xml:space="preserve">Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße.</head>
              <head xml:id="echoid-head282" xml:space="preserve">CAP. XX.</head>
              <p>
                <s xml:id="echoid-s2141" xml:space="preserve">QVæ Ariſtoteles de loco ſcribit multas in ſe continent difficultates. </s>
                <s xml:id="echoid-s2142" xml:space="preserve">Primum,
                  <lb/>
                cap .4. lib. 4. phyſicorum ait, omne corpus eſſe in ſuo proprio loco, ſupponen
                  <lb/>
                do vnum centrum pro loco grauium, et unam circunferentiam pro loco leuium cor
                  <lb/>
                porum. </s>
                <s xml:id="echoid-s2143" xml:space="preserve">Sed quomodo punctum poteſt eſſe locus ipſius corporis, cum omni dimen
                  <lb/>
                ſione
                  <reg norm="capacitateque" type="simple">capacitateq́;</reg>
                ſit denudatum? </s>
                <s xml:id="echoid-s2144" xml:space="preserve">vnde ſi
                  <reg norm="centrum" type="context">centrũ</reg>
                locus eſſet corporum grauium, om
                  <lb/>
                nia dicta corpora grauia, extra proprium locum exiſterent, quia nullum ex iis eſt,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <lb/>
                ſit in centro. </s>
                <s xml:id="echoid-s2145" xml:space="preserve">Adde quod neque hoc cum loci definitione ab ipſo poſita conſentiret
                  <lb/>
                cum ipſe dicat in eodem cap. locum eſſe ſuperſiciem quandam, & non interuallum,
                  <lb/>
                licet huiuſmodi definitio falſa appareat primo ex
                  <reg norm="inconuenienti" type="context">incõuenienti</reg>
                falſo, quod ipſe hinc
                  <lb/>
                ſequuturum dicit, ideſt, quod ſi locus interuallum eſſet, infinita loca exiſterent, quod
                  <lb/>
                reuera nec ob hanc cauſam inconueniens exiſtit, quia eodem planè modo quo ali-
                  <lb/>
                quod corpus poteſt eſſe infinita corpora, (quod ipſe diceret in potentia) ſic etiam in
                  <lb/>
                teruallum aliquod poſſet eſſe infinita interualla. </s>
                <s xml:id="echoid-s2146" xml:space="preserve">Cum autem dicat ſuperficies cor-
                  <lb/>
                poris ambientis eſſe locum eius corporis, quod continetur, cogitur dicere lineam,
                  <lb/>
                quæ circundat ſuperficiem, ſuperficiei locum eſſe, & puncta ipſius lineæ, quod reue
                  <lb/>
                ra abſurdum eſt. </s>
                <s xml:id="echoid-s2147" xml:space="preserve">Locus corporis eſt interuallum illud eadem magnitudine & figu-
                  <lb/>
                ra, qua corpus ipſum pręditum eſt, quod ſi non eſſet, ſed eſſet ſuperficies, quemad-
                  <lb/>
                modum Ariſtoteles voluit, maximum inconueniens ſequeretur, ſcilicet æquales lo-
                  <lb/>
                cos capere inęqualia corpora, aut corpora æqualia, locos inęquales occupare, quod
                  <lb/>
                ſcitu facillimum eſt, cum Theon ſuper Ptolomęi Almageſtum iam probarit ſphæ-
                  <lb/>
                ricam ſuperficiem maius interuallum corporeum continere, quàm aliam
                  <reg norm="quanuis" type="context">quãuis</reg>
                ſu-
                  <lb/>
                perficiem dictæ ſphęricæ æqualem, vnde poſſent facilè reperiri duo loci, quorum al-
                  <lb/>
                ter millies altero maior eſſet, capaces tamen corporum æqualium, aut reperiri duo
                  <lb/>
                corpora, quorum alterum millies maius eſſet altero, quę tamen corpora apta eſſent
                  <lb/>
                ad occupandos locos ęquales, quamuis Ariſtoteles dicat, locum, neque maiorem ne
                  <lb/>
                que minorem eſſe debere locato. </s>
                <s xml:id="echoid-s2148" xml:space="preserve">Sed interualla corporea ęqualia à quauis figura
                  <lb/>
                terminata, continebunt ſemper corpora ęqualia. </s>
                <s xml:id="echoid-s2149" xml:space="preserve">Corporeum igitur interuallum eſt </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>