Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
[Figure 221]
[Figure 222]
[Figure 223]
[Figure 224]
[Figure 225]
[Figure 226]
[Figure 227]
[Figure 228]
[Figure 229]
[Figure 230]
< >
page |< < (322) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div622" type="section" level="3" n="25">
              <div xml:id="echoid-div626" type="letter" level="4" n="3">
                <p>
                  <s xml:id="echoid-s3915" xml:space="preserve">
                    <pb o="322" rhead="IO. BAPT. BENED." n="334" file="0334" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0334"/>
                  et
                    <var>.g.s.a.</var>
                  quibus mediantibus cognoſcitur longitudo vmbræ gnomonis hoc eſt
                    <var>.s.a</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s3916" xml:space="preserve">Cum autem dico,
                    <reg norm="medioque" type="simple">medioq́;</reg>
                  azimut Solis, nihil aliud ſigniſicare volo, niſi angu-
                    <lb/>
                  lum, quem terminat linea azimutalis horologij, hoc eſt vmbra gnomonis cum li-
                    <lb/>
                  nea meridiana, ſeu cum verticali in ipſo plano horologij. </s>
                  <s xml:id="echoid-s3917" xml:space="preserve">qui quidem anguli, æqua
                    <lb/>
                  les ſunt ijs, qui in triangulo conſtituto ex
                    <var>.n.r.</var>
                  ex
                    <var>.r.o.</var>
                  & ex
                    <var>.o.z.</var>
                  reperiuntur, cuius qui
                    <lb/>
                  dem trianguli, angulus puncti
                    <var>.r.</var>
                  rectus eſt, angulus verò terminatus ab
                    <var>.n.r.</var>
                  et
                    <var>.o.z.</var>
                  il
                    <lb/>
                  le eſt quem conſtituit azimut cum verticali, vel ipſi æqualis, vt coalternus, reliquus
                    <lb/>
                  verò in
                    <reg norm="puncto" type="context">pũcto</reg>
                    <var>.o.</var>
                  ille eſt
                    <reg norm="quem" type="context">quẽ</reg>
                  azimut facit
                    <reg norm="cum" type="context">cũ</reg>
                  meridiano, vel ipſi ęqualis vt coalternus.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3918" xml:space="preserve">Vnde quotieſcunque volueris in aliquo plano, orizonti parallelo, lineas hora-
                    <lb/>
                  rias ducere, iudico optimum fore ſi ſeparatim deſignatæ fuerint hæ tres figuræ, hoc
                    <lb/>
                  eſt analemma meridianum, vel azimutale, vt ita dicam, </s>
                  <s xml:id="echoid-s3919" xml:space="preserve">deinde parallelus
                    <reg norm="inſeruiens" type="context">inſeruiẽs</reg>
                    <lb/>
                  pro tropicis, vt ego feci cap .51. meæ gnomonicæ, quæ duæ figuræ,
                    <reg norm="ſufficientes" type="context">ſufficiẽtes</reg>
                    <reg norm="erunt" type="context">erũt</reg>
                    <lb/>
                  pro omnibus horologijs, tam ori-
                    <lb/>
                    <figure xlink:label="fig-0334-01" xlink:href="fig-0334-01a" number="358">
                      <image file="0334-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0334-01"/>
                    </figure>
                  zontalibus quam muralibus, non
                    <lb/>
                  tamen omninò, ideo pro orizon-
                    <lb/>
                  talibus, tertiam figuram ſeparatam
                    <lb/>
                  deſignaui, quę erit circulus
                    <var>.H.I.
                      <lb/>
                    K.</var>
                  eiuſdem magnitudinis cum ana-
                    <lb/>
                  lemmate, in quo, ductis duobus
                    <lb/>
                  dia metris inuicom ad rectos, quo-
                    <lb/>
                  rum vnus
                    <var>.H.I.</var>
                  ſignificet orizon-
                    <lb/>
                  talem lineam, reliqua verò
                    <reg norm="ver- ticalem" type="context">ver-
                      <lb/>
                    ticalẽ</reg>
                  , ducatur poſtea
                    <var>.s.a.</var>
                  tam di-
                    <lb/>
                  ſtans ab
                    <var>.H.I.</var>
                  quanta eſt longitudo
                    <lb/>
                  gnomonis horologij orizontalis,
                    <lb/>
                  cogitemus, </s>
                  <s xml:id="echoid-s3920" xml:space="preserve">deinde hunc circulum
                    <lb/>
                  communem eſſe omnibus azimut
                    <lb/>
                  necnon plano horologij, in cuius
                    <lb/>
                  circunferentia à puncto
                    <var>.k.</var>
                  nadir ip-
                    <lb/>
                  ſius zenit, accipiantur arcus æqua-
                    <lb/>
                  les ijs ipſorum azimut, quos termi-
                    <lb/>
                  nat zenit, & ipſi almicantarat, vt
                    <lb/>
                  exempli gratia, accipiemus arcum
                    <lb/>
                    <var>k.L.</var>
                  æqualem arcui
                    <var>.L.z.</var>
                  ipſius ana-
                    <lb/>
                  lemmatis, ducta poſtea linea occul
                    <lb/>
                  ta
                    <var>.o.L.</var>
                  ſignabimus azimutalem
                    <var>.s.a.</var>
                    <lb/>
                  in puncto
                    <var>.a.</var>
                  vbi hæ duæ lineæ ſein
                    <lb/>
                  uicem ſecant, & ſic habebimus iu-
                    <lb/>
                  ſtam
                    <reg norm="quantitatem" type="context">quãtitatem</reg>
                  ipſius vmbræ gno
                    <lb/>
                  monis
                    <var>.s.o.</var>
                  tali hora, </s>
                  <s xml:id="echoid-s3921" xml:space="preserve">deinde in ori-
                    <lb/>
                  zontali
                    <var>.H.I.</var>
                  ſumatur
                    <var>.o.r.</var>
                  à centro
                    <var>.
                      <lb/>
                    o.</var>
                  ęqualis ei quę in analemate repe
                    <lb/>
                  ritur, quæ vna portio eſt commu-
                    <lb/>
                  nis ſectionis meridiani cum almi-
                    <lb/>
                  cantarat, terminata ab axe orizon
                    <lb/>
                  tis, & à diametro paralleli. </s>
                  <s xml:id="echoid-s3922" xml:space="preserve">Deinde </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>