Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
< >
page |< < (22) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div76" type="math:theorem" level="3" n="34">
              <pb o="22" rhead="IO. BAPT. BENED." n="34" file="0034" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0034"/>
            </div>
            <div xml:id="echoid-div77" type="math:theorem" level="3" n="35">
              <head xml:id="echoid-head51" xml:space="preserve">THEOREMA
                <num value="35">XXXV</num>
              .</head>
              <p>
                <s xml:id="echoid-s309" xml:space="preserve">
                  <emph style="sc">QVivis</emph>
                numerus per alterum multiplicatus, & diuiſus, medius eſt propor-
                  <lb/>
                tionalis inter productum multiplicationis, & proueniens diaiſionis.</s>
              </p>
              <p>
                <s xml:id="echoid-s310" xml:space="preserve">Exempli gratia, ſi .20.
                  <reg norm="multiplicentur" type="context">multiplicẽtur</reg>
                per quinque & inde per quinque diuidantur
                  <lb/>
                productum erit .100. proueniens .4. inter quos numeros .20. medius eſt propor-
                  <lb/>
                tionalis.</s>
              </p>
              <p>
                <s xml:id="echoid-s311" xml:space="preserve">Hoc vt ſpeculemur, proponatur numerus multiplicandus & diuidendus, qui ſi-
                  <lb/>
                gnificetur linea
                  <var>.u.e.</var>
                multiplicans autem & diuidens linea
                  <var>.a.u.</var>
                multiplicationis
                  <lb/>
                productum ſit
                  <var>.e.a.</var>
                proueniens ex diuiſione ſit
                  <var>.o.e</var>
                . </s>
                <s xml:id="echoid-s312" xml:space="preserve">Nunc proueniens
                  <var>.e.o.</var>
                per
                  <reg norm="nu- merum" type="context">nu-
                    <lb/>
                  merũ</reg>
                  <var>.a.u.</var>
                diuidentem multiplicetur, cuius multiplicationis productum ſit
                  <var>.e.i.</var>
                  <lb/>
                quare, eadem erit proportio numeri
                  <var>.a.e.</var>
                  <lb/>
                ad numerum
                  <var>.e.i.</var>
                quæ eſt numeri
                  <var>.u.e.</var>
                ad
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0034-01a" xlink:href="fig-0034-01"/>
                numerum
                  <var>.e.o.</var>
                ex prima ſextiaut .18. vel
                  <lb/>
                19. ſeptimi. </s>
                <s xml:id="echoid-s313" xml:space="preserve">Sed cum numerus
                  <var>.u.e.</var>
                ex
                  <ref id="ref-0010">.11. theoremate præſentis libri</ref>
                , numero
                  <var>.e.
                    <lb/>
                  i.</var>
                æqualis ſit. </s>
                <s xml:id="echoid-s314" xml:space="preserve">verum eſſe, quod propoſi-
                  <lb/>
                tum fuit conſequetur.</s>
              </p>
              <div xml:id="echoid-div77" type="float" level="4" n="1">
                <figure xlink:label="fig-0034-01" xlink:href="fig-0034-01a">
                  <image file="0034-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0034-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div79" type="math:theorem" level="3" n="36">
              <head xml:id="echoid-head52" xml:space="preserve">THEOREMA
                <num value="36">XXXVI</num>
              .</head>
              <p>
                <s xml:id="echoid-s315" xml:space="preserve">CVR ij, qui propoſitum numerum ita multiplicare & diuidere cupiunt, vt pro
                  <lb/>
                ductum multiplicationis, tam ſit multiplex prouenienti ex diuiſione, quam
                  <lb/>
                quæritur, rectè ſumant aliquem numerum pro multiplicante & diuidente, qui ſit ra
                  <lb/>
                dix quadrata denominantis quęſitę multiplicitatis.</s>
              </p>
              <p>
                <s xml:id="echoid-s316" xml:space="preserve">Exempli gratia, proponuntur .20. multiplicanda atque diuidenda, ita vt pro-
                  <lb/>
                ductum multiplicationis nonuplum ſit prouenienti ex diuiſione, nempè, vt pro-
                  <lb/>
                ueniens, nona pars ſit eiuſmodi producti, </s>
                <s xml:id="echoid-s317" xml:space="preserve">quare quadratam radicem ipſorum no-
                  <lb/>
                uem, ideſt denominantis ſumunt, tria ſcilicet, multiplicant igitur & diuidunt
                  <lb/>
                data .20. ex quo productum erit .60. proueniens autem .6. cum duabus tertijs. </s>
                <s xml:id="echoid-s318" xml:space="preserve">&
                  <lb/>
                propoſitum ſequitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s319" xml:space="preserve">Cuius ſpeculationis cauſa, ſignificetur numerus propoſitus linea
                  <var>.u.e.</var>
                multipli-
                  <lb/>
                cans autem & diuidens linea
                  <var>.u.a.</var>
                productum ſit
                  <var>.e.a.</var>
                proueniens
                  <var>.e.o.</var>
                quadratum
                  <lb/>
                verò
                  <var>.a.u.</var>
                ſit
                  <var>.x.a.</var>
                erit igitur proportio
                  <var>.a.e.</var>
                ad
                  <var>.e.o.</var>
                dupla proportioni
                  <var>.a.e.</var>
                ad nume
                  <lb/>
                rum
                  <var>.u.e.</var>
                ex præcedenti theoremate: </s>
                <s xml:id="echoid-s320" xml:space="preserve">Adhæc, cogitemus in linea
                  <var>.u.a.</var>
                vnitatem
                  <var>.
                    <lb/>
                  u.i.</var>
                  <reg norm="terminenturque" type="simple">terminenturq́;</reg>
                duo producta
                  <var>.e.i.</var>
                et
                  <var>.x.i.</var>
                </s>
                <s xml:id="echoid-s321" xml:space="preserve">quare eadem erit proportio
                  <var>.a.e.</var>
                ad
                  <var>.e.i.</var>
                  <lb/>
                quæ eſt
                  <var>.a.e.</var>
                ad
                  <var>.u.e.</var>
                numerus enim
                  <var>.e.i.</var>
                (quamuis ſuperficialis) idem eſt cum nume-
                  <lb/>
                ro lineari
                  <var>.u.e.</var>
                ſed
                  <var>.a.e.</var>
                ad
                  <var>.e.i.</var>
                ſic ſe habet ſicut
                  <var>.a.u.</var>
                ad
                  <var>.u.i.</var>
                ex prima ſexti aut .18.
                  <lb/>
                vel .19. ſeptimi, (quod ipſum dico de
                  <var>.a.x.</var>
                ad
                  <var>.x.i.</var>
                ) </s>
                <s xml:id="echoid-s322" xml:space="preserve">quare proportio
                  <var>.a.x.</var>
                ad
                  <var>.x.i.</var>
                hoc
                  <lb/>
                eſt
                  <var>.x.u.</var>
                ęqualis erit
                  <reg norm="proportioni" type="simple">ꝓportioni</reg>
                  <var>.a.e.</var>
                ad
                  <var>.u.e.</var>
                at trigeſimotertio & trigeſimoquarto theo
                  <lb/>
                remate probatum eſt proportionem numeri
                  <var>.a.x.</var>
                ad vnitatem, duplam eſſe propor-
                  <lb/>
                tioni eiuſdem numeri
                  <var>.a.x.</var>
                ad
                  <var>.u.x.</var>
                ſequitur
                  <lb/>
                igitur cum dimidia ſint æqualia, tota etiam
                  <lb/>
                æqualia eſſe: </s>
                <s xml:id="echoid-s323" xml:space="preserve">hoc eſt proportionem numeri
                  <var>.
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0034-02a" xlink:href="fig-0034-02"/>
                  a.e.</var>
                ad numerum
                  <var>.e.o.</var>
                æqualem eſſe propor
                  <lb/>
                tioni numeri
                  <var>.a.x.</var>
                ad vnitatem. </s>
                <s xml:id="echoid-s324" xml:space="preserve">Itaque rectè
                  <lb/>
                ſumitur numerus
                  <var>.a.u.</var>
                eiuſmodi vt
                  <reg norm="quadratum" type="context">quadratũ</reg>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>