Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of figures

< >
[361. Figure]
[362. Figure]
[363. Figure]
[364. Figure]
[365. Figure]
[366. Figure]
[367. Figure]
[368. Figure]
[369. Figure]
[370. Figure]
[371. Figure]
[372. Figure]
[373. Figure]
[374. Figure]
[375. Figure]
[376. Figure]
[377. Figure]
[378. Figure]
[379. Figure]
[380. Figure]
[381. Figure]
[382. Figure]
[383. Figure]
[384. Figure]
[385. Figure]
[386. Figure]
[387. Figure]
[388. Figure]
[389. Figure]
[390. Figure]
< >
page |< < (349) of 445 > >|
EPISTOL AE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div670" type="section" level="3" n="29">
              <div xml:id="echoid-div673" type="letter" level="4" n="2">
                <p>
                  <s xml:id="echoid-s4219" xml:space="preserve">
                    <pb o="349" rhead="EPISTOL AE." n="361" file="0361" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0361"/>
                  deſignabit, puncta verò
                    <var>.o.</var>
                  et
                    <var>.K.</var>
                  vt puncta laterum
                    <var>.c.e.</var>
                  et
                    <var>.s.e.</var>
                  æquædiſtantia à
                    <lb/>
                  punctis
                    <var>.c.</var>
                  et
                    <var>.s.</var>
                    <reg norm="eadem" type="context">eadẽ</reg>
                  ſemper ſint, ita tamen vt puncta lineæ
                    <var>.u.n.</var>
                  ſemper diuerſa exi
                    <lb/>
                    <reg norm="ſtant" type="context">ſtãt</reg>
                  , & quodlibet ipſius quadrilateri latus, æquale ſit medietati maioris axis ipſius
                    <lb/>
                  oxygoniæ ſectionis delineandæ, et
                    <var>.c.o.</var>
                  ſeu
                    <var>.s.K.</var>
                  (quod idem eſt) ſit æqualis medie
                    <lb/>
                  tati axis minoris dictæ ſectionis, et
                    <var>.z.r.</var>
                  æqualis duplo
                    <var>.e.h.</var>
                  vnde, quando puncta
                    <var>.e.</var>
                  et
                    <var>.
                      <lb/>
                    l.</var>
                  coniuncta ſimul erunt, ſimiliter coniunctæ ſimul erunt
                    <var>.c.e.</var>
                  et
                    <var>.e.s.</var>
                  cum
                    <var>.c.l.</var>
                  et
                    <var>.l.s.</var>
                    <anchor type="figure" xlink:label="fig-0361-01a" xlink:href="fig-0361-01"/>
                    <anchor type="figure" xlink:label="fig-0361-02a" xlink:href="fig-0361-02"/>
                  </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>