Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 445
>
[Figure 431]
Page: 390
[Figure 432]
Page: 391
[Figure 433]
Page: 392
[Figure 434]
Page: 393
[Figure 435]
Page: 395
[Figure 436]
Page: 395
[Figure 437]
Page: 396
[Figure 438]
Page: 397
[Figure 439]
Page: 399
[Figure 440]
Page: 401
[Figure 441]
Page: 403
[Figure 442]
Page: 405
[Figure 443]
Page: 407
[Figure 444]
Page: 409
[Figure 445]
Page: 418
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 445
>
page
|<
<
(383)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div737
"
type
="
section
"
level
="
3
"
n
="
42
">
<
div
xml:id
="
echoid-div737
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s4542
"
xml:space
="
preserve
">
<
pb
o
="
383
"
rhead
="
EPISTOLAE.
"
n
="
395
"
file
="
0395
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0395
"/>
cum ſit
<
var
>.f.x.</
var
>
æqualis ipſi
<
var
>.u.i.</
var
>
vt tibi probaui, & inuicem parallelæ ideo
<
var
>.f.i.</
var
>
parallela
<
lb
/>
erit ipſi
<
var
>.x.u.</
var
>
ex .33. primi Euclidis. </
s
>
<
s
xml:id
="
echoid-s4543
"
xml:space
="
preserve
">Vnde ex .30. eiuſdem, parallela erit etiam ipſi
<
var
>.a.
<
lb
/>
c.</
var
>
ſed cum
<
var
>.x.u.</
var
>
diuiſa ſit ab
<
var
>.d.b.</
var
>
per æqualia, eo quod diuidit
<
var
>.a.c.</
var
>
eodem modo, quę
<
lb
/>
ipſi parallela eſt ex .2. ſexti. </
s
>
<
s
xml:id
="
echoid-s4544
"
xml:space
="
preserve
">Reliqua tibi conſideranda relinquo. </
s
>
<
s
xml:id
="
echoid-s4545
"
xml:space
="
preserve
">cum verò ambæ
<
var
>.f.
<
lb
/>
x.</
var
>
et
<
var
>.u.i.</
var
>
parallelæ ſint ipſi
<
var
>.b.d.</
var
>
ſequitur quod cum ex .34. primi
<
reg
norm
="
vnaquæque
"
type
="
simple
">vnaquæq;</
reg
>
<
var
>.f.m.</
var
>
et
<
var
>.m.
<
lb
/>
i.</
var
>
æqualis ſit medietati ipſius
<
var
>.x.u.</
var
>
erunt inuicem æquales.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
435
">
<
image
file
="
0395-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0395-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s4546
"
xml:space
="
preserve
">Minime dubitabam tibi non ſatisfacere Eutocium in .3. propoſitione ſecundi
<
lb
/>
lib. de centris Grauium Archimedis, cum citet .6. librum de elementis conicis, ad-
<
lb
/>
de quod ſi aliud in ipſo .6. libro ab eo citato non eſſet magis ad propoſitum, quàm
<
lb
/>
ca quæ ab ipſo citata ſunt, nihilominus adhuc irreſolutus maneres.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4547
"
xml:space
="
preserve
">Conſidera igitur eandem ipſam figuram præcedentem; </
s
>
<
s
xml:id
="
echoid-s4548
"
xml:space
="
preserve
">pro alia verò parabola ſi
<
lb
/>
mili dictæ, accipe ſecundam figuram ipſius tertiæ dictæ propoſitionis. </
s
>
<
s
xml:id
="
echoid-s4549
"
xml:space
="
preserve
">Deinde ima
<
lb
/>
ginabis duo latera
<
var
>.o.x.</
var
>
et
<
var
>.o.p.</
var
>
diuiſa eſſe per æqualia in punct is
<
var
>.g.</
var
>
et
<
var
>.K.</
var
>
<
reg
norm
="
protractisque
"
type
="
simple
">protractisq́;</
reg
>
<
lb
/>
diametris
<
var
>.g.y.</
var
>
et
<
var
>.K.u.</
var
>
quæ, vt in præcedenti probaui, ſunt inuicem æquales, ſcire
<
lb
/>
debes quod ſimiles parabolæ inuicem aliæ non poſſunt eſſe, niſi eæ quæ diametros
<
lb
/>
proportionales ſuis baſibus habeant,
<
reg
norm
="
ſimiliterque
"
type
="
simple
">ſimiliterq́;</
reg
>
poſitæ, hoc eſt, ut proportio ipſius
<
lb
/>
<
var
>b.d.</
var
>
ad
<
var
>.a.c.</
var
>
ſit eadem quæ ipſius
<
var
>.o.r.</
var
>
ad
<
var
>.x.p.</
var
>
& quod anguli ad
<
var
>.r.</
var
>
ſint æquales angulis
<
lb
/>
circa
<
var
>.d</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4550
"
xml:space
="
preserve
">Notentur ergo primum puncta communia ip ſius
<
var
>.o.g.</
var
>
cum
<
var
>.y.t.</
var
>
& ipſius
<
var
>.b.</
var
>
x
<
lb
/>
cum
<
var
>.f.m.</
var
>
characteribus. ω
<
unsure
/>
. et
<
var
>.n</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4551
"
xml:space
="
preserve
">Nunc igitur ſcimus
<
var
>.f.m.</
var
>
æqualem eſſe
<
var
>.m.i.</
var
>
tota
<
reg
norm
="
mque
"
type
="
simple
">mq́;</
reg
>
<
var
>.f.
<
lb
/>
i.</
var
>
parallelam eſſe ipſi
<
var
>.a.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4552
"
xml:space
="
preserve
">Idem dico de
<
var
>.y.t.u.</
var
>
<
reg
norm
="
triangulique
"
type
="
simple
">trianguliq́;</
reg
>
<
var
>.x.f.n.</
var
>
et
<
var
>.g.y.</
var
>
ω
<
unsure
/>
. eſſe ſimiles
<
lb
/>
triangulis
<
var
>.n.m.b.</
var
>
et. ω
<
unsure
/>
<
var
>.t.o.</
var
>
quod ita probatur, nam ex .15. primi Euclid. anguli ad
<
var
>.n.</
var
>
<
lb
/>
ſunt inuicem æquales, ex .29. verò eiuſdem anguli
<
var
>.f.x.n.</
var
>
et
<
var
>.n.b.m.</
var
>
ſimiliter æquales
<
lb
/>
ita etiam
<
var
>.n.f.x.</
var
>
et
<
var
>.n.m.b</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4553
"
xml:space
="
preserve
">Idem dico in ſecunda figura, vnde ex .4. ſexti Eucli. proportio
<
var
>.n.f.</
var
>
ad
<
var
>.m.n.</
var
>
erit ea
<
lb
/>
dem quę
<
var
>.f.x.</
var
>
ad
<
var
>.b.m.</
var
>
& ipſius
<
var
>.n.f.</
var
>
ad
<
var
>.x.f.</
var
>
vt
<
var
>.n.m.</
var
>
ad
<
var
>.m.b.</
var
>
ex .16. quinti. </
s
>
<
s
xml:id
="
echoid-s4554
"
xml:space
="
preserve
">Quare ex .11.
<
lb
/>
<
figure
xlink:label
="
fig-0395-02
"
xlink:href
="
fig-0395-02a
"
number
="
436
">
<
image
file
="
0395-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0395-02
"/>
</
figure
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>