Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(94)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div266
"
type
="
math:theorem
"
level
="
3
"
n
="
139
">
<
p
>
<
s
xml:id
="
echoid-s1219
"
xml:space
="
preserve
">
<
pb
o
="
94
"
rhead
="
IO. BAPT. BENED.
"
n
="
106
"
file
="
0106
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0106
"/>
<
var
>A.I.</
var
>
vnde quadratum lineæ
<
var
>.A.I.</
var
>
erit .100. idem dico de quadrato lineæ
<
var
>.I.L</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1220
"
xml:space
="
preserve
">quare
<
lb
/>
ex penultima primi
<
var
>.A.L.</
var
>
erit radix quadrata quadrati .200. ideſt .14. cum vno ſepti-
<
lb
/>
mo ferè. </
s
>
<
s
xml:id
="
echoid-s1221
"
xml:space
="
preserve
">quare
<
var
>.A.L.</
var
>
iuncta
<
var
>.A.O.</
var
>
erit .28. cum duobus ſeptimis. </
s
>
<
s
xml:id
="
echoid-s1222
"
xml:space
="
preserve
">ſed
<
var
>.L.O.</
var
>
ex ſuppoſi-
<
lb
/>
to erit .20. eo quòd
<
var
>.L.I.</
var
>
ęquatur ipſi
<
var
>.A.I.</
var
>
ſimiliter et
<
var
>.I.O.</
var
>
vt ipſe etiam probauit. </
s
>
<
s
xml:id
="
echoid-s1223
"
xml:space
="
preserve
">qua
<
lb
/>
dempta ex
<
var
>.L.A.O.</
var
>
relinquetur
<
var
>.H.A.M.</
var
>
(nam
<
var
>.L.H.</
var
>
cum
<
var
>.O.M.</
var
>
æquatur ipſi
<
var
>.L.O.</
var
>
ex .
<
lb
/>
35. tertij ipſius Eucli. partium .8.
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
duabus ſeptimis. cuius
<
reg
norm
="
dimidium
"
type
="
context
">dimidiũ</
reg
>
hoc eſt
<
var
>.A.H.</
var
>
erit
<
lb
/>
4. cum una ſeptima, quod eſt propoſitum. </
s
>
<
s
xml:id
="
echoid-s1224
"
xml:space
="
preserve
">Reſpice figuram ipſius Tartaleæ.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div268
"
type
="
math:theorem
"
level
="
3
"
n
="
140
">
<
head
xml:id
="
echoid-head159
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
140
">CXL</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1225
"
xml:space
="
preserve
">QVadrageſimum nonum quæſitum ſimiliter poſſumus alio modo ſoluere, vt
<
lb
/>
putà cum vnumquodque latus rhombi ſimul cum area cognitum, ſeu datum
<
lb
/>
nobis ſit
<
reg
norm
="
cognitum
"
type
="
context
">cognitũ</
reg
>
ſimiliter nobis erit quadratum lateris
<
var
>.a.d.</
var
>
hoc eſt ſumma duorum
<
lb
/>
quadratorum
<
var
>.a.o.</
var
>
et
<
var
>.o.d.</
var
>
ex penultima primi Euclid. </
s
>
<
s
xml:id
="
echoid-s1226
"
xml:space
="
preserve
">cúmque nobis cognita etiam
<
lb
/>
ſit totalis ſuperficies rhombi, cognita etiam nobis erit eius medietas, hoc eſt produ-
<
lb
/>
ctum
<
var
>.o.d.</
var
>
in
<
var
>.o.a.</
var
>
vnde ex methodo .37. Theorematis cognoſcemus .a
<
unsure
/>
<
var
>.o.</
var
>
et
<
var
>.o.d.</
var
>
& ſic
<
lb
/>
etiam eorum dupla, quod quærebatur.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
146
">
<
image
file
="
0106-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0106-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div269
"
type
="
math:theorem
"
level
="
3
"
n
="
141
">
<
head
xml:id
="
echoid-head160
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
141
">CXLI</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1227
"
xml:space
="
preserve
">PVlchrum quæſitum fuit id, quod Tartalea ponit pro .18. noni libri in quarto fo-
<
lb
/>
lio, quod huiuſmodi eſt. </
s
>
<
s
xml:id
="
echoid-s1228
"
xml:space
="
preserve
">Aliquis habet dolium mero plenum, ex quo
<
lb
/>
duas vrnas extrahit ipſius vini, ſed loco ipſius vini infundit duas vrnas aquæ. </
s
>
<
s
xml:id
="
echoid-s1229
"
xml:space
="
preserve
">Dein
<
lb
/>
de poſt aliquot dies extrahit iterum alias duas vrnas illius miſti, & iterum infundit
<
lb
/>
duas vrnas aquæ, & poſt alios aliquot dies idem facit, & hac vltima tertia vice in-
<
lb
/>
uenit aquam tantam eſſe, quantum vinum. </
s
>
<
s
xml:id
="
echoid-s1230
"
xml:space
="
preserve
">Quæritur nunc quot vrnas capiat il-
<
lb
/>
lud dolium.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1231
"
xml:space
="
preserve
">Solutio ipſius Tartaleæ bona eſt, cum ſupponat illas quatuor quantitates vini eſſe
<
lb
/>
inuicem continuas proportionales, vt putà primò totum vinum merum, poſteà re-
<
lb
/>
ſiduum pro ſecunda quantitate, deinde pro tertia in ſecunda, & pro quarta in ter-
<
lb
/>
tia extractione, hoc eſt quòd proportio totius vini meri ad vinum in prima ſit, vt hu
<
lb
/>
ius ad vinum in ſecunda, & vt huius ad vinum in tertia miſtione. </
s
>
<
s
xml:id
="
echoid-s1232
"
xml:space
="
preserve
">Sed quia ipſe
<
lb
/>
non probat hanc continuam proportionalitatem ex methodo ſcientifica, mihi
<
reg
norm
="
visum
"
type
="
context
">visũ</
reg
>
<
lb
/>
eſt hoc loco illam deſcribere.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1233
"
xml:space
="
preserve
">Cogitemus igitur
<
var
>a.u.</
var
>
pro capacitate dolij, et
<
var
>.a.i.</
var
>
pro quantitate duarum vrna-
<
lb
/>
rum. </
s
>
<
s
xml:id
="
echoid-s1234
"
xml:space
="
preserve
">Nunc uerò ſupponamus quamlibet partem huius miſti omogeneam eſſe ſuo
<
lb
/>
toto, quapropter ſequetur eandem proportionem eſſe vini ad aquam in qualibet
<
lb
/>
parte, quæ erit in toto, & ideò imaginemur
<
var
>.e.o.</
var
>
æqualem
<
var
>.a.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1235
"
xml:space
="
preserve
">Sed in puncto
<
var
>.i.</
var
>
tali
<
lb
/>
modo diuiſam, vt proportio
<
var
>.i.e.</
var
>
ad
<
var
>.i.o.</
var
>
eadem ſit quæ
<
var
>.i.a.</
var
>
ad
<
var
>.i.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1236
"
xml:space
="
preserve
">Supponamus
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>