Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(95)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div269
"
type
="
math:theorem
"
level
="
3
"
n
="
141
">
<
p
>
<
s
xml:id
="
echoid-s1236
"
xml:space
="
preserve
">
<
pb
o
="
95
"
rhead
="
THEOREM. ARITH.
"
n
="
107
"
file
="
0107
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0107
"/>
<
var
>e.o.</
var
>
eſſe duas primas vrnas vini miſti hoc eſt primæ miſtionis, vnde cum eadem pro
<
lb
/>
portio ſit
<
var
>.a.i.</
var
>
ad
<
var
>.i.u.</
var
>
vt
<
var
>.e.i.</
var
>
ad
<
var
>.i.o.</
var
>
ita erit (ex .19. quinti).
<
var
>a.e.</
var
>
ad
<
var
>.o.u.</
var
>
ut
<
var
>.a.i.</
var
>
ad
<
var
>.i.u.</
var
>
&
<
lb
/>
<
reg
norm
="
componendo
"
type
="
context
">componẽdo</
reg
>
ita erit
<
var
>.a.e.</
var
>
cum
<
var
>.o.u.</
var
>
hoc eſt
<
var
>.i.o.u.</
var
>
(proptereà quòd
<
var
>.i.o.</
var
>
æqualis eſt
<
var
>.a.e.</
var
>
<
lb
/>
vt reſidua totorum æqualium) ad
<
var
>.o.u.</
var
>
quemadmodum
<
var
>.a.i.u.</
var
>
ad
<
var
>.i.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1237
"
xml:space
="
preserve
">Quare
<
var
>.i.u.</
var
>
erit
<
lb
/>
media proportionalis inter
<
var
>.a.u.</
var
>
et
<
var
>.o.u.</
var
>
vnde proportio
<
var
>.a.u.</
var
>
ad
<
var
>.o.u.</
var
>
dupla erit pro
<
lb
/>
portioni
<
var
>.i.u.</
var
>
ad
<
var
>.o.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1238
"
xml:space
="
preserve
">Nunc autem cum extracta fuerit quantitas
<
var
>.e.o.</
var
>
ex primo mi-
<
lb
/>
ſto, & poſteà infuſa aqua vſque ad plenitudinem dolij, proportio ingredientium
<
lb
/>
huius ſecundi miſti erit ea, quæ eſt inter
<
var
>.o.u.</
var
>
et
<
var
>.o.a.</
var
>
eo quòd in prima miſtione pro-
<
lb
/>
proportio ingredientium erat ea, quæ eſt inter
<
var
>.o.u.</
var
>
et
<
var
>.a.e.</
var
>
vel inter
<
var
>.a.e.</
var
>
et
<
var
>.o.u.</
var
>
<
lb
/>
vt demonſtrauimus. </
s
>
<
s
xml:id
="
echoid-s1239
"
xml:space
="
preserve
">Accipiamus ergo
<
var
>.t.m.</
var
>
huiuſmodi ſecundi mifti, magnitudi-
<
lb
/>
nis
<
var
>.a.i.</
var
>
vel
<
var
>.e.o.</
var
>
ſignificantis duas vrnas, & permutemus eum in tantam aquam,
<
lb
/>
<
reg
norm
="
ſitque
"
type
="
simple
">ſitq́;</
reg
>
punctum
<
var
>.o.</
var
>
quod nobis diuidat
<
var
>t.m.</
var
>
in
<
var
>.o.m.</
var
>
et,
<
var
>o.t.</
var
>
partes ſimplices, tali propor
<
lb
/>
tione inuicem relatas, vt ſunt
<
var
>.o.u.</
var
>
et
<
var
>.o.a.</
var
>
vnde habebimus ex ſupradictis rationibus
<
lb
/>
eandem proportionem ipſius
<
var
>.a.t.</
var
>
ad
<
var
>.m.u.</
var
>
vt
<
var
>.a.o.</
var
>
ad
<
var
>.o.u.</
var
>
& componendo
<
var
>.a.t.</
var
>
cum
<
var
>.m.
<
lb
/>
u.</
var
>
hoc eſt
<
var
>.i.m.u.</
var
>
(eo quod cum
<
var
>.t.m.</
var
>
æqualis ſit
<
var
>.a.i.</
var
>
per conſequens
<
var
>.i.m.</
var
>
æqualis erit
<
var
>.
<
lb
/>
a.t.</
var
>
) ad
<
var
>.m.u.</
var
>
vt
<
var
>.a.o.u.</
var
>
ad
<
var
>.o.u.</
var
>
ſed proportio
<
var
>.a.o.u.</
var
>
ad
<
var
>.o.u.</
var
>
dupla erat proportioni
<
var
>.i.o.
<
lb
/>
u.</
var
>
ad
<
var
>.o.u.</
var
>
quemadmodum ſupra diximus. </
s
>
<
s
xml:id
="
echoid-s1240
"
xml:space
="
preserve
">Ergo proportio
<
var
>.i.m.u.</
var
>
ad
<
var
>.m.u.</
var
>
erit dupla
<
lb
/>
ſimiliter proportioni
<
var
>.i.o.u.</
var
>
ad
<
var
>.o.
<
lb
/>
u.</
var
>
quapropter
<
var
>.o.u.</
var
>
erit media pro
<
lb
/>
<
figure
xlink:label
="
fig-0107-01
"
xlink:href
="
fig-0107-01a
"
number
="
147
">
<
image
file
="
0107-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-01
"/>
</
figure
>
portionalis inter
<
var
>.i.u.</
var
>
et
<
var
>.m.u</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1241
"
xml:space
="
preserve
">Ec-
<
lb
/>
ce igitur quomodo eadem eſt pro
<
lb
/>
portio
<
var
>.a.u.</
var
>
ad
<
var
>.i.u.</
var
>
quæ
<
var
>.i.u.</
var
>
ad
<
var
>.o.u.</
var
>
& quæ
<
var
>.o.u.</
var
>
ad
<
var
>.m.u.</
var
>
qui quidem modus neceſſarius
<
lb
/>
eſt vt intellectus acquieſcat, id quod experientia non facit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div271
"
type
="
math:theorem
"
level
="
3
"
n
="
142
">
<
head
xml:id
="
echoid-head161
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
142
">CXLII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1242
"
xml:space
="
preserve
">PRæcedens Tartaleæ quæſitum elegans quidem eſt, ſed pulchrum etiam vide-
<
lb
/>
tur quærere proportionem ingredientium in ultima miſtione, cum cognita fue
<
lb
/>
rit nobis proportio continentiæ dolij ad capacitatis vrnæ ſimul
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
numero vitium
<
lb
/>
extractionum & impletionum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1243
"
xml:space
="
preserve
">Exempli gratia, ſi proportio
<
var
>.a.u.</
var
>
ad
<
var
>.a.i.</
var
>
cognita nobis fuerit, cognoſcemus etiam
<
lb
/>
<
var
>e.i.</
var
>
ex regula de tribus & per conſequens etiam
<
var
>.i.o.</
var
>
reſiduum ex
<
var
>.e.o.</
var
>
& ſimiliter ag-
<
lb
/>
gregatum
<
var
>.a.i.</
var
>
cum
<
var
>.i.o.</
var
>
& ſic
<
var
>.o.u.</
var
>
reſiduum totius, et
<
var
>.o.t.</
var
>
ſimiliter, eo quòd
<
var
>.a.u.</
var
>
ad
<
var
>.a.
<
lb
/>
o.</
var
>
eſt ut
<
var
>.t.m.</
var
>
ad
<
var
>.o.t.</
var
>
vnde cognoſcemus etiam
<
var
>.o.m.</
var
>
vt reſiduum
<
var
>.t.m.</
var
>
& ſimiliter ag-
<
lb
/>
gregatum
<
var
>.a.o.</
var
>
cum
<
var
>.o.m.</
var
>
hoc eſt
<
var
>.a.m.</
var
>
& etiam
<
var
>.m.u.</
var
>
reſiduum totius.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1244
"
xml:space
="
preserve
">Cognoſcere autem proportionem totius dolij ad vrnam, vel ècontrà, cum cogni
<
lb
/>
ta nobis fuerit proportio ingredientium in vltima miſtione ſimul cum numero vi-
<
lb
/>
tium extractionum, & repletionum, quod ſcribit Tartalea, hoc etiam modo
<
lb
/>
poſſumus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1245
"
xml:space
="
preserve
">Exempli gratia, ſi proportio
<
var
>.m.u.</
var
>
ad
<
var
>.m.a.</
var
>
cognita nobis fuerit, illicò ſcie-
<
lb
/>
mus proportionem
<
var
>.a.u.</
var
>
ad
<
var
>.m.u.</
var
>
& cum ſciuerimus numerum vitium extractionum,
<
lb
/>
& impletionum illicò cognoſci-
<
lb
/>
mus multiplicitatem proportio-
<
lb
/>
nis
<
var
>.a.u.</
var
>
ad
<
var
>.m.u.</
var
>
ad proportionem
<
var
>.
<
lb
/>
<
figure
xlink:label
="
fig-0107-02
"
xlink:href
="
fig-0107-02a
"
number
="
148
">
<
image
file
="
0107-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-02
"/>
</
figure
>
o.u.</
var
>
ad
<
var
>.m.u.</
var
>
quapropter propor-
<
lb
/>
tio
<
var
>.o.u.</
var
>
ad
<
var
>.m.u.</
var
>
nobis cognita erit
<
lb
/>
hoc eſt
<
var
>.a.u.</
var
>
ad
<
var
>.i.u.</
var
>
& ſimiliter ea, quæ eſt
<
var
>.a.u.</
var
>
ad
<
var
>.a.i.</
var
>
& è conuerſo ſimiliter.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>