Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(96)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div271
"
type
="
math:theorem
"
level
="
3
"
n
="
142
">
<
pb
o
="
96
"
rhead
="
IO. BAPT. BENED.
"
n
="
108
"
file
="
0108
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0108
"/>
<
p
>
<
s
xml:id
="
echoid-s1246
"
xml:space
="
preserve
">Vnde cum aliquis diceret priori modo, dolium habeo vrnarum .400. vini, & per
<
lb
/>
vices .25. extraxi & impleui ipſum, vt dictum eſt. </
s
>
<
s
xml:id
="
echoid-s1247
"
xml:space
="
preserve
">Nunc verò velim ſcire proportio-
<
lb
/>
nem vini ad a quam hac vltima vice. </
s
>
<
s
xml:id
="
echoid-s1248
"
xml:space
="
preserve
">Nunc igitur ſi procedemus iuxta doctrinam
<
lb
/>
primi exempli huius theorematis, obtinebimus quod quærebamus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1249
"
xml:space
="
preserve
">Sed ſi diceret iuxta Tartaleæ quæſitum, hoc eſt dolium habeo, quod ignoro quot
<
lb
/>
<
reg
norm
="
nam
"
type
="
context
">nã</
reg
>
urnas contineat, volo tamen per .25. vices extrahere, & implere vt
<
reg
norm
="
ſupradictum
"
type
="
context
">ſupradictũ</
reg
>
<
lb
/>
eſt, ita vt vltima vice proportio vini ad aquam ſit ſeſquialtera. </
s
>
<
s
xml:id
="
echoid-s1250
"
xml:space
="
preserve
">Tunc ſi iuxta mo-
<
lb
/>
dum ſecundi exempli huius theorematis procedemus habebimus quod cupimus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1251
"
xml:space
="
preserve
">Alio etiam modo aliquis quærere poſſet, hoc eſt, habeo
<
reg
norm
="
dolium
"
type
="
context
">doliũ</
reg
>
quod capit .400.
<
lb
/>
vrnas. </
s
>
<
s
xml:id
="
echoid-s1252
"
xml:space
="
preserve
">Habeo etiam vas trium vrnarum, quo mediante me oportet extrahere, &
<
lb
/>
implere. </
s
>
<
s
xml:id
="
echoid-s1253
"
xml:space
="
preserve
">Velim tamen ſcire quoties me hoc facere oporteat, ita vt poſtrema vi-
<
lb
/>
ce vinum ſe habeat ad aquam in proportione ſeſquialtera, vnde multoties accidet
<
lb
/>
vltimam extractionem, & impletionem mutilatam, ſeu imperfectam, euadere.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1254
"
xml:space
="
preserve
">Exempli gratia, ſi proportio vini ad aquam in vltima miſtione deberet eſſe vt
<
var
>.n.
<
lb
/>
u.</
var
>
ad
<
var
>.n.a.</
var
>
ita vt extrema vice fuiſſet
<
var
>.t.m.</
var
>
quæ quidem
<
var
>.t.m.</
var
>
excederet terminum per
<
var
>.
<
lb
/>
n.m.</
var
>
quæ
<
var
>.n.m.</
var
>
reuera eſſet nobis cognita, eò quòd ex priori modo hic ſupra dicto
<
lb
/>
proportio
<
var
>.a.m.</
var
>
ad
<
var
>.m.u.</
var
>
nobis in-
<
lb
/>
noteſceret, & proportio
<
var
>.n.a.</
var
>
ad
<
var
>.
<
lb
/>
n.u.</
var
>
nobis data eſt ſimul cum
<
reg
norm
="
quan titate
"
type
="
context
">quã
<
lb
/>
<
figure
xlink:label
="
fig-0108-01
"
xlink:href
="
fig-0108-01a
"
number
="
149
">
<
image
file
="
0108-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0108-01
"/>
</
figure
>
titate</
reg
>
<
var
>.a.u.</
var
>
</
s
>
<
s
xml:id
="
echoid-s1255
"
xml:space
="
preserve
">quare quantitas
<
var
>.n.u.</
var
>
&
<
lb
/>
<
var
>m.u.</
var
>
nobis cognita, remanebit, et
<
lb
/>
<
var
>n.m.</
var
>
eorum differentia ſimiliter, etiam, et
<
var
>.t.n.</
var
>
reſiduum vaſis, quo metimur, vnde
<
lb
/>
neceſſe erit, quo
<
unsure
/>
d vltima vice vas contineret ſolum
<
var
>.t.n.</
var
>
reliqua uerò per ſe patent.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div274
"
type
="
math:theorem
"
level
="
3
"
n
="
143
">
<
head
xml:id
="
echoid-head162
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
143
">CXLIII</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1256
"
xml:space
="
preserve
">HIeronymus Cardanus in
<
ref
id
="
ref-0015
">lib. ſuæ arithmeticæ cap .66. quæſtione .56.</
ref
>
quam Car
<
lb
/>
danicam vocat, ita inquit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1257
"
xml:space
="
preserve
">Quidam perambulauit prima die certam quantitatem ſpatij, & ſecunda die,
<
reg
norm
="
tan tò
"
type
="
context
">tã
<
lb
/>
tò</
reg
>
plus proportionaliter, quantò diameter eſt maior coſta, & tertia die tantò plus
<
lb
/>
ſecunda, quantò proportionaliter portio lineæ diuiſæ ſecundum proportionem ha
<
lb
/>
bentem medium, & duo extrema excedit minorem portionem, & quarta die in
<
lb
/>
proportione ad tertiam vt ſecunda ad primam, & quinta die proportionaliter tan-
<
lb
/>
tò plus quarta, quantò in tertia plus ſecunda, & ita alternatis vicibus in diebus no-
<
lb
/>
uem peregit nouem milliaria. </
s
>
<
s
xml:id
="
echoid-s1258
"
xml:space
="
preserve
">Quæritur igitur quantum ambulauit die prima.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1259
"
xml:space
="
preserve
">Hoc autem nihil aliud eſt, quàm ſi aliquis diceret, propono tibi, exempli gratia,
<
lb
/>
lineam
<
var
>.a.l.</
var
>
nouem partibus inuicem non æqualibus ita diuiſam
<
var
>.a.c</
var
>
:
<
var
>c.d</
var
>
:
<
var
>d.e</
var
>
: & cæte-
<
lb
/>
ris, quarum partium proportiones tibi etiam do, vt putà.
<
var
>a.c.</
var
>
ad
<
var
>.c.d.</
var
>
et
<
var
>.c.d.</
var
>
ad
<
var
>.d.e.</
var
>
et
<
var
>.
<
lb
/>
d.e.</
var
>
ad
<
var
>.e.f.</
var
>
& ſic de cæteris vſque ad poſtremam
<
var
>.k.l.</
var
>
quæ quidem proportiones ſint
<
lb
/>
etiam inuicem diſſimiles, ſeu inæquales, do tibi etiam
<
reg
norm
="
proportionem
"
type
="
context
">proportionẽ</
reg
>
totius lineæ
<
var
>.a.l.</
var
>
<
lb
/>
ad
<
var
>.a.b.</
var
>
ſuam partem, quæ vt in propoſito exemplo nonupla eſt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1260
"
xml:space
="
preserve
">Quæro nunc quam proportionem habebit
<
var
>.a.c.</
var
>
ad
<
var
>.a.b.</
var
>
& ſic de cæteris partibus
<
lb
/>
eiuſdem ad eandem
<
var
>.a.b</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1261
"
xml:space
="
preserve
">Quod quidem facillimum erit ſpeculari, nec non operari vnicuique, qui omnino
<
lb
/>
practicæ numerorum ignarus non fuerit, dum ab ordine ſcientifico non diſcedat.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1262
"
xml:space
="
preserve
">Cum enim cognoſcimus proportionem
<
var
>.a.c.</
var
>
ad
<
var
>.c.d.</
var
>
conſequenter cognoſcemus
<
lb
/>
ctiam proportion em aggregati
<
var
>.a.c.d.</
var
>
ad
<
var
>.c.d.</
var
>
cum autem cognouerimus proportio- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>