Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(110)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div293
"
type
="
appendix
"
level
="
3
"
n
="
1
">
<
pb
o
="
110
"
rhead
="
IO. BAPT. BENED.
"
n
="
122
"
file
="
0122
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0122
"/>
<
p
>
<
s
xml:id
="
echoid-s1400
"
xml:space
="
preserve
">DEmpto poſteà quo volueris horum altero productorum ex maximo,
<
reg
norm
="
diuiſoque
"
type
="
simple
">diuiſoq́;</
reg
>
<
lb
/>
reliquo per differentiam conſequentium, ipſi diametraliter oppoſitam, pro
<
lb
/>
ueniet tibi numerus antecedens
<
reg
norm
="
correſpondensque
"
type
="
simple
">correſpondensq́;</
reg
>
illi.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1401
"
xml:space
="
preserve
">Animaduertendum tamen eſt, quòd ſi in figura à me ita ordinata, ſumma ſim-
<
lb
/>
plex propoſita medium locum occuparet, vt in figura
<
var
>.D.</
var
>
arithmetica videri poteſt;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1402
"
xml:space
="
preserve
">tunc vt habeatur eius productum, addenda ſimul erunt circunſtantia producta .eo
<
lb
/>
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
eius ſecundum latus eſſet antecedens medio loco conſtitutum, & prima pars
<
reg
norm
="
quae- ſita
"
type
="
simple
">quę-
<
lb
/>
ſita</
reg
>
numeri propoſiti: </
s
>
<
s
xml:id
="
echoid-s1403
"
xml:space
="
preserve
">in qua figura
<
var
>.D.</
var
>
manifeſtè patet ratio, quare colligendi ſint
<
lb
/>
tam errores, quam producta, dum eorum alterum eſt plus, reliquum verò minus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1404
"
xml:space
="
preserve
">Speculatio figurę
<
var
>.D.</
var
>
arithmeticę videbitur in figura
<
var
>.D.</
var
>
geometrica, eodem fe
<
lb
/>
rè modo quo fecimus in figuris
<
var
>.C.</
var
>
mutatis mutandis, reſpectu ipſius plus, & minus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1405
"
xml:space
="
preserve
">Collectio namque
<
reg
norm
="
errorum
"
type
="
context
">errorũ</
reg
>
ſimiliter accidentalis eſt, eo quod eſſentialis numerus
<
lb
/>
diuiſor per ſe, eſt maxima differentia ſummarum ſimplicium, vt in dicta figura
<
var
>.D.</
var
>
<
lb
/>
cerni poteſt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1406
"
xml:space
="
preserve
">Sed vt ſuperius dixi, nunc etiam repeto, quòd rectè hoc loco multiplicabatur
<
lb
/>
ſumma ſimplex propoſita, cum prima par
<
lb
/>
te primę poſitionis, vt productum diuide
<
lb
/>
retur per primam ſimplicem ſummam,
<
lb
/>
<
figure
xlink:label
="
fig-0122-01
"
xlink:href
="
fig-0122-01a
"
number
="
167
">
<
image
file
="
0122-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0122-01
"/>
</
figure
>
vnde proueniret nobis pars prima
<
reg
norm
="
quaeſi- ta
"
type
="
simple
">quęſi-
<
lb
/>
ta</
reg
>
noſtri numeri propoſiti, ex regula de
<
lb
/>
tribus, vnica poſitione.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1407
"
xml:space
="
preserve
">Vt exempli gratia, datus numerus diui
<
lb
/>
dendus ſit .100. in quinque partes, tales
<
lb
/>
verò,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ſecunda duplo maior ſit prima
<
lb
/>
cum .2. ſimul, tertia autem æqualis ſit pri-
<
lb
/>
mæ & ſecundæ cum .3. vnitatibus iunctis,
<
lb
/>
quarta poſteà maior ſit prima ſecunda, &
<
lb
/>
tertia per .4. vnitates, quinta demum ſu-
<
lb
/>
peret reliquas omnes per quinque vnita
<
lb
/>
tes, vt in figura
<
var
>.E.</
var
>
videre eſt, quæ quidem
<
lb
/>
partes compoſitæ (ſumpta vnitate pro
<
lb
/>
prima) ita diſpoſitæ erunt .1. 4. 8. 17. 35.
<
lb
/>
quarum ſumma erit .65. ſimplices autem
<
lb
/>
cum diſpoſitæ fuerint erunt .1. 2. 3. 6. 12.
<
lb
/>
quarum ſumma erit .24. dempta igitur
<
lb
/>
cum fuerit hæc ſimplex ſumma .24. à com
<
lb
/>
poſita .65. reſiduum erit .41. hoc eſt ſum-
<
lb
/>
ma numerorum propoſitorum cum ſuis
<
lb
/>
iterationibus in ipſis partibus, quod cum
<
lb
/>
per ſe clariſſimum ſit, ſuperſluum eſt
<
reg
norm
="
ipsam
"
type
="
context
">ipsã</
reg
>
<
lb
/>
ſummam annatomizare per ſingulas par-
<
lb
/>
tes, niſi quis habuerit eius cerebrum à fi-
<
lb
/>
gura Omega
<
reg
norm
="
terminatum
"
type
="
context
">terminatũ</
reg
>
, cui tamen poſ-
<
lb
/>
ſemus dicere dictam ſummam .41. in .4.
<
lb
/>
partes diuidi, cuius prima eſſet .2. pro ad
<
lb
/>
ditione ad
<
reg
norm
="
ſecundam
"
type
="
context
">ſecũdam</
reg
>
partem ſimplicium, </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>