Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(111)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div293
"
type
="
appendix
"
level
="
3
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s1407
"
xml:space
="
preserve
">
<
pb
o
="
111
"
rhead
="
THEOREM. ARIT.
"
n
="
123
"
file
="
0123
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0123
"/>
ſecunda verò eſſet .5. pro additione ad tertiam partem ſimplicium, tertia autem eſ-
<
lb
/>
ſet .11. pro additione ad quartam partem ſimplicium, quarta demum eſſet .23. pro
<
lb
/>
additione quintæ partis ſimplicium, quarum partium .2. 5. 11. 23. ſumma eſt .41. vt
<
lb
/>
diximus. </
s
>
<
s
xml:id
="
echoid-s1408
"
xml:space
="
preserve
">Hæc igitur ſumma .41. ſubducenda eſt à numero .100. propoſito, vnde re-
<
lb
/>
linquetur .59. pro ſumma partium ſimplicium numeri propoſiti, quarum prima erit
<
lb
/>
2. cum vndecim vigeſimisquartis ex diuiſione huiuſmodi .59. per .24. ſummam par-
<
lb
/>
tium ſimplicium ex viregulæ de tribus, dicendo ſi .24. prouenit nobis ab .1. prima
<
lb
/>
partium ſimplicium, à quo proueniet nobis .59? </
s
>
<
s
xml:id
="
echoid-s1409
"
xml:space
="
preserve
">vnde proueniet à .2. cum vndecim
<
lb
/>
vigeſimisquartis pro prima parte quæſita, ſecunda verò iuxta propoſitum, erit .6.
<
lb
/>
cum .22. vigeſimisquartis, tertia autem .12. cum nouem vigeſimisquartis, quarta po
<
lb
/>
ſteà .25. cum .18. vigeſimisquartis, quinta demum erit .52. cum .12. vigeſimisquartis,
<
lb
/>
quarum omnium ſumma erit .100.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1410
"
xml:space
="
preserve
">STifelius in primo exemplo regulæ falſi, ita inquit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1411
"
xml:space
="
preserve
">Quæratur numerus, à cuius dimidio ſubtractæ partes tertia, & quarta relin-
<
lb
/>
quatur .300.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1412
"
xml:space
="
preserve
">Ipſe enim ſupponit .300. pro reſiduo cognito alterius numeri incogniti, deinde
<
lb
/>
accipit .24. pro prima poſitione numeri cogniti, à cuius medietate abſcindit tertiam
<
lb
/>
& quartam partem ipſius medietatis, vnde remanet .5. qui quidem numerus .5. ex
<
num
value
="
22
">.
<
lb
/>
22.</
num
>
quinti vel .15. ſeptimiſe ha-
<
lb
/>
bebit ad .24. vt .300. ad
<
reg
norm
="
numerum
"
type
="
context
">numerũ</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0123-01
"
xlink:href
="
fig-0123-01a
"
number
="
168
">
<
image
file
="
0123-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0123-01
"/>
</
figure
>
quæſitum, </
s
>
<
s
xml:id
="
echoid-s1413
"
xml:space
="
preserve
">quare cum quis multi
<
lb
/>
plicauerit .300. per .24. & produ-
<
lb
/>
ctum diuiſerit per .5. proueniet
<
num
value
="
1440
">.
<
lb
/>
1440.</
num
>
numerus quæſitus, ex vi
<
lb
/>
regulæ de tribus.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1414
"
xml:space
="
preserve
">Conſideremus igitur
<
reg
norm
="
meam
"
type
="
context
">meã</
reg
>
di-
<
lb
/>
ſpoſitionem numerorum huiuſ-
<
lb
/>
modi exempli, in figura hic ſup-
<
lb
/>
poſita
<
var
>.F.</
var
>
in qua videre licebit
<
lb
/>
quo pacto ipſe etiam Stifelius ac
<
lb
/>
cipiat diuiſorem .5. vt
<
reg
norm
="
differentiam
"
type
="
context
">differentiã</
reg
>
<
lb
/>
errorum & non ut differentiam
<
lb
/>
duorum conſequentium .5. et .10
<
lb
/>
ſicuti eſt re uera, ut diuiſor dico,
<
lb
/>
ex rationibus à me hic ſupra ad-
<
lb
/>
ductis, quamuis vna & eadem ſit
<
lb
/>
quantitas neceſſariò ut patet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1415
"
xml:space
="
preserve
">ACcipiamus adhuc aliud exemplum à Tartalea propoſitione .9.
<
reg
norm
="
datum
"
type
="
context
">datũ</
reg
>
, &
<
reg
norm
="
oppoſitum
"
type
="
context
">oppoſitũ</
reg
>
<
lb
/>
priori; </
s
>
<
s
xml:id
="
echoid-s1416
"
xml:space
="
preserve
">nam ſicut in illo numerus ſimplex habebatur per ſubtractionem ſum-
<
lb
/>
mæ numerorum adijciendorum, in hoc fitèconuerſo, hoc eſt per additionem nu-
<
lb
/>
merorum ſubtrahendorum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1417
"
xml:space
="
preserve
">Problema igitur ita ſe habet. </
s
>
<
s
xml:id
="
echoid-s1418
"
xml:space
="
preserve
">Fuit quidam mercator qui habebat aliquot au-
<
lb
/>
reos, cuius quantitas poſteà quærenda erit, hic enim fecit duo itinera, ut aliquod
<
lb
/>
dictis aureis mediantibus lucrum faceret, in primo autem itinere duplicauit nume-
<
lb
/>
rum ſuorum aureorum, ex quibus poſteà conſumpſit .4. pro aliquibus expenſis, in </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>