Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(136)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div308
"
type
="
chapter
"
level
="
2
"
n
="
2
">
<
div
xml:id
="
echoid-div328
"
type
="
section
"
level
="
3
"
n
="
12
">
<
p
>
<
s
xml:id
="
echoid-s1641
"
xml:space
="
preserve
">
<
pb
o
="
136
"
rhead
="
IO. BAPT. BENED.
"
n
="
148
"
file
="
0148
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0148
"/>
cere oportet. </
s
>
<
s
xml:id
="
echoid-s1642
"
xml:space
="
preserve
">Ratio verò ab ipſo adducta propter quam
<
var
>.E.</
var
>
repreſentatur oculo al-
<
lb
/>
tius quam
<
var
>.b.</
var
>
nempe eo quod
<
var
>.A.</
var
>
ſuperſtet ipſi
<
var
>.E.</
var
>
nihil valet, quia ſi inferius eſſet,
<
lb
/>
idem contingeret, ſed hoc euenit eo quod
<
var
>.E.</
var
>
altius eſt ipſo
<
var
>.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1643
"
xml:space
="
preserve
">Idem dico de
<
var
>.h.</
var
>
<
lb
/>
vbi ſimiliter decipitur. </
s
>
<
s
xml:id
="
echoid-s1644
"
xml:space
="
preserve
">Idem etiam in .7. cap. fallitur in ſecundo modo, quem oſten
<
lb
/>
dit pro ſecundo quadrato aliquo degradato à parallelogrammo degradato magis
<
lb
/>
longo quàm lato, cum ducat parallelam
<
var
>.l.m.</
var
>
ad
<
var
>.b.c.</
var
>
à puncto
<
var
>.l.</
var
>
interſection is ipſius
<
var
>.
<
lb
/>
o.c.</
var
>
id, quod non rectè efficitur quemadmodum ex rationibus à me allegatis circa
<
lb
/>
meas figuras
<
var
>.A.A.</
var
>
facilè innoteſcit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1645
"
xml:space
="
preserve
">Nono deinde cap. contrario planè ordine, quam oporteret proceſsit, quia
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
<
lb
/>
angulus .2. trianguli perfecti magis diſtet à plano ſuper quod degradari debet
<
lb
/>
triangulum, quàm latus .1. 3. oppoſitum dicto angulo .2. & per confequens longère
<
lb
/>
motior ſit ab oculo, ipſe in degradato,
<
reg
norm
="
eum
"
type
="
context
">eũ</
reg
>
magis propinquum eſſe facit, è con-
<
lb
/>
tra eap .10. rectè fecit contra id, quod capite .9. tradiderat.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1646
"
xml:space
="
preserve
">Quod autem deinceps in prima parte .11. & vltimi capitis aſſerit eſt,
<
reg
norm
="
admittendum
"
type
="
context
">admittendũ</
reg
>
.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1647
"
xml:space
="
preserve
">Quod verò in ſecunda parte ab eo traditur, ideſt alius quidam modus quem de
<
reg
norm
="
tranſ
"
type
="
context
">trãſ</
reg
>
<
lb
/>
ferendis punctis à perfecto in degradato proponit, non eſt modus vniuerſalis; </
s
>
<
s
xml:id
="
echoid-s1648
"
xml:space
="
preserve
">quia
<
lb
/>
ſi altitudo
<
var
>.T.Q.</
var
>
oculi à plano orizontali, non eſſet æqualis medietati lateris
<
var
>.B.D.</
var
>
<
lb
/>
perfecti, interualla
<
var
>.a.b.c.d.e.</
var
>
lateris
<
var
>B.D.</
var
>
admittenda non eſſent.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1649
"
xml:space
="
preserve
">Pro cuius rei intelligentia ſit in ſubſcripta hic figura corporea
<
var
>.ω.</
var
>
parallelogram-
<
lb
/>
mum rectangulum
<
var
>A.B.C.D.</
var
>
in plano orizontali, & linea
<
var
>.Q.H.</
var
>
illud per medium
<
lb
/>
diuidat, quæ ſit parallela duobus lateribus
<
var
>.A.B.</
var
>
et
<
var
>.C.D.</
var
>
in cuius quolibet puncto
<
var
>.
<
lb
/>
Q.</
var
>
ſit infimus terminus altitudinis oculi, & in
<
var
>.
<
lb
/>
<
figure
xlink:label
="
fig-0148-01
"
xlink:href
="
fig-0148-01a
"
number
="
202
">
<
image
file
="
0148-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0148-01
"/>
</
figure
>
T.</
var
>
ad perpendiculum ipſius
<
var
>.Q.</
var
>
ſit verus ſitus
<
lb
/>
eiuſdem, tantum eleuatus à
<
var
>.Q.</
var
>
quanta eſt
<
lb
/>
medietas ipſius
<
var
>.D.B.</
var
>
ſitq́ue figura corpo-
<
lb
/>
rea finita ſimilis meæ
<
var
>.A.</
var
>
vnde
<
var
>.Q.T.</
var
>
æqualis
<
lb
/>
erit ipſi
<
var
>.Q.æ.</
var
>
& planum perpendiculare
<
reg
norm
="
orizon- ti
"
type
="
context
">orizõ-
<
lb
/>
ti</
reg
>
, ſuper quod punctum
<
var
>.k.</
var
>
perfecti duci debet
<
lb
/>
ſit
<
var
>.R.D.B.</
var
>
ſintq́ue ductæ per imaginationem
<
lb
/>
lineæ
<
var
>.T.K</
var
>
:
<
var
>Q.K.</
var
>
et ſit
<
var
>.K.N.</
var
>
perpendicularis la-
<
lb
/>
teri
<
var
>.C.D.</
var
>
à quo puncto
<
var
>.N.</
var
>
imaginatione ſit
<
reg
norm
="
con
"
type
="
context
">cõ</
reg
>
<
lb
/>
præhenſa linea
<
var
>.N.Q.</
var
>
at que hæ tres lineæ ſectæ
<
lb
/>
ſint à plano in punctis
<
var
>.c.i.</
var
>
et .2. quorum
<
reg
norm
="
punctum
"
type
="
context
">punctũ</
reg
>
.
<
lb
/>
2. erit quæſitum plani. </
s
>
<
s
xml:id
="
echoid-s1650
"
xml:space
="
preserve
">Imaginemur nunc duos
<
lb
/>
triangulos
<
var
>.K.T.Q.</
var
>
et
<
var
>.N.Q.æ.</
var
>
qui ſecti
<
reg
norm
="
erunt
"
type
="
context
">erũt</
reg
>
<
lb
/>
à plano
<
var
>.R.B.D.</
var
>
quorum communes ſectiones
<
lb
/>
erunt .1. 2. et
<
var
>.D.c.</
var
>
& quia
<
var
>.N.K.D.i.</
var
>
et
<
var
>.æ.Q.</
var
>
<
lb
/>
inuicem ſunt parallelæ, ſequitur eandem pro-
<
lb
/>
portionem futuram ipſius
<
var
>.Q.K.</
var
>
ad
<
var
>.K.i.</
var
>
quæ eſt
<
lb
/>
ipſius
<
var
>.æ.N.</
var
>
ad
<
var
>.N.D.</
var
>
imaginatione concipien
<
lb
/>
do a puncto
<
var
>.K.</
var
>
vſque ad
<
var
>.æ.Q.</
var
>
quandam paral-
<
lb
/>
lelam ipſi
<
var
>.N.æ.</
var
>
quemadmo dum ex te ipſo intel
<
lb
/>
ligere potes. </
s
>
<
s
xml:id
="
echoid-s1651
"
xml:space
="
preserve
">Sed ratione ſimilitudinis trian-
<
lb
/>
gulorum ita ſe res habet de
<
var
>.æ.Q.</
var
>
ad
<
var
>.D.c.</
var
>
vt de
<
var
>.
<
lb
/>
æ.N.</
var
>
ad
<
var
>.N.D.</
var
>
vt quoque de
<
var
>.T.Q.</
var
>
ad .2. 1. quemadmodum ipſius
<
var
>.Q.K.</
var
>
ad
<
var
>.K.i.</
var
>
vn-
<
lb
/>
de ex .11. quinti, idem erit de
<
var
>.Q.T.</
var
>
ad .1. 2. quod de
<
var
>.Q.æ.</
var
>
ad
<
var
>.c.D.</
var
>
& ex .16. eiuſdem
<
lb
/>
de
<
var
>.Q.T.</
var
>
ad
<
var
>.Q.æ.</
var
>
quod de .1. 2. ad
<
var
>.c.D.</
var
>
& exiſtente
<
var
>.æ.Q.</
var
>
ex ſuppoſito æquali ipſi.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>